| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunrab |
|- U_ n e. ( 0 ... ( # ` A ) ) { x e. ( .< Chain A ) | ( # ` x ) = n } = { x e. ( .< Chain A ) | E. n e. ( 0 ... ( # ` A ) ) ( # ` x ) = n } |
| 2 |
|
simplr |
|- ( ( ( A e. Fin /\ .< Po A ) /\ x e. ( .< Chain A ) ) -> .< Po A ) |
| 3 |
|
simpr |
|- ( ( ( A e. Fin /\ .< Po A ) /\ x e. ( .< Chain A ) ) -> x e. ( .< Chain A ) ) |
| 4 |
|
simpll |
|- ( ( ( A e. Fin /\ .< Po A ) /\ x e. ( .< Chain A ) ) -> A e. Fin ) |
| 5 |
2 3 4
|
chnpolfz |
|- ( ( ( A e. Fin /\ .< Po A ) /\ x e. ( .< Chain A ) ) -> ( # ` x ) e. ( 0 ... ( # ` A ) ) ) |
| 6 |
|
risset |
|- ( ( # ` x ) e. ( 0 ... ( # ` A ) ) <-> E. n e. ( 0 ... ( # ` A ) ) n = ( # ` x ) ) |
| 7 |
|
eqcom |
|- ( n = ( # ` x ) <-> ( # ` x ) = n ) |
| 8 |
7
|
rexbii |
|- ( E. n e. ( 0 ... ( # ` A ) ) n = ( # ` x ) <-> E. n e. ( 0 ... ( # ` A ) ) ( # ` x ) = n ) |
| 9 |
6 8
|
bitri |
|- ( ( # ` x ) e. ( 0 ... ( # ` A ) ) <-> E. n e. ( 0 ... ( # ` A ) ) ( # ` x ) = n ) |
| 10 |
5 9
|
sylib |
|- ( ( ( A e. Fin /\ .< Po A ) /\ x e. ( .< Chain A ) ) -> E. n e. ( 0 ... ( # ` A ) ) ( # ` x ) = n ) |
| 11 |
10
|
rabeqcda |
|- ( ( A e. Fin /\ .< Po A ) -> { x e. ( .< Chain A ) | E. n e. ( 0 ... ( # ` A ) ) ( # ` x ) = n } = ( .< Chain A ) ) |
| 12 |
1 11
|
eqtr2id |
|- ( ( A e. Fin /\ .< Po A ) -> ( .< Chain A ) = U_ n e. ( 0 ... ( # ` A ) ) { x e. ( .< Chain A ) | ( # ` x ) = n } ) |
| 13 |
|
fzfid |
|- ( ( A e. Fin /\ .< Po A ) -> ( 0 ... ( # ` A ) ) e. Fin ) |
| 14 |
|
chnflenfi |
|- ( A e. Fin -> { x e. ( .< Chain A ) | ( # ` x ) = n } e. Fin ) |
| 15 |
14
|
adantr |
|- ( ( A e. Fin /\ .< Po A ) -> { x e. ( .< Chain A ) | ( # ` x ) = n } e. Fin ) |
| 16 |
15
|
ralrimivw |
|- ( ( A e. Fin /\ .< Po A ) -> A. n e. ( 0 ... ( # ` A ) ) { x e. ( .< Chain A ) | ( # ` x ) = n } e. Fin ) |
| 17 |
|
iunfi |
|- ( ( ( 0 ... ( # ` A ) ) e. Fin /\ A. n e. ( 0 ... ( # ` A ) ) { x e. ( .< Chain A ) | ( # ` x ) = n } e. Fin ) -> U_ n e. ( 0 ... ( # ` A ) ) { x e. ( .< Chain A ) | ( # ` x ) = n } e. Fin ) |
| 18 |
13 16 17
|
syl2anc |
|- ( ( A e. Fin /\ .< Po A ) -> U_ n e. ( 0 ... ( # ` A ) ) { x e. ( .< Chain A ) | ( # ` x ) = n } e. Fin ) |
| 19 |
12 18
|
eqeltrd |
|- ( ( A e. Fin /\ .< Po A ) -> ( .< Chain A ) e. Fin ) |