Metamath Proof Explorer


Theorem chnflenfi

Description: There is a finite number of chains with fixed length over finite alphabet. Trivially holds for invalid lengths as there're no matching sequences. (Contributed by Ender Ting, 5-Jan-2025) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chnflenfi
|- ( A e. Fin -> { a e. ( .< Chain A ) | ( # ` a ) = T } e. Fin )

Proof

Step Hyp Ref Expression
1 wrdnfi
 |-  ( A e. Fin -> { a e. Word A | ( # ` a ) = T } e. Fin )
2 id
 |-  ( a e. ( .< Chain A ) -> a e. ( .< Chain A ) )
3 2 chnwrd
 |-  ( a e. ( .< Chain A ) -> a e. Word A )
4 3 ad2antrl
 |-  ( ( T. /\ ( a e. ( .< Chain A ) /\ ( # ` a ) = T ) ) -> a e. Word A )
5 4 rabss3d
 |-  ( T. -> { a e. ( .< Chain A ) | ( # ` a ) = T } C_ { a e. Word A | ( # ` a ) = T } )
6 5 mptru
 |-  { a e. ( .< Chain A ) | ( # ` a ) = T } C_ { a e. Word A | ( # ` a ) = T }
7 ssfi
 |-  ( ( { a e. Word A | ( # ` a ) = T } e. Fin /\ { a e. ( .< Chain A ) | ( # ` a ) = T } C_ { a e. Word A | ( # ` a ) = T } ) -> { a e. ( .< Chain A ) | ( # ` a ) = T } e. Fin )
8 1 6 7 sylancl
 |-  ( A e. Fin -> { a e. ( .< Chain A ) | ( # ` a ) = T } e. Fin )