Metamath Proof Explorer


Theorem chnflenfi

Description: There is a finite number of chains with fixed length over finite alphabet. Trivially holds for invalid lengths as there're no matching sequences. (Contributed by Ender Ting, 5-Jan-2025) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chnflenfi ( 𝐴 ∈ Fin → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin )

Proof

Step Hyp Ref Expression
1 wrdnfi ( 𝐴 ∈ Fin → { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin )
2 id ( 𝑎 ∈ ( < Chain 𝐴 ) → 𝑎 ∈ ( < Chain 𝐴 ) )
3 2 chnwrd ( 𝑎 ∈ ( < Chain 𝐴 ) → 𝑎 ∈ Word 𝐴 )
4 3 ad2antrl ( ( ⊤ ∧ ( 𝑎 ∈ ( < Chain 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑇 ) ) → 𝑎 ∈ Word 𝐴 )
5 4 rabss3d ( ⊤ → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ⊆ { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } )
6 5 mptru { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ⊆ { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 }
7 ssfi ( ( { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin ∧ { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ⊆ { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ) → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin )
8 1 6 7 sylancl ( 𝐴 ∈ Fin → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin )