| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdnfi |
⊢ ( 𝐴 ∈ Fin → { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin ) |
| 2 |
|
id |
⊢ ( 𝑎 ∈ ( < Chain 𝐴 ) → 𝑎 ∈ ( < Chain 𝐴 ) ) |
| 3 |
2
|
chnwrd |
⊢ ( 𝑎 ∈ ( < Chain 𝐴 ) → 𝑎 ∈ Word 𝐴 ) |
| 4 |
3
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑎 ∈ ( < Chain 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑇 ) ) → 𝑎 ∈ Word 𝐴 ) |
| 5 |
4
|
rabss3d |
⊢ ( ⊤ → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ⊆ { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ) |
| 6 |
5
|
mptru |
⊢ { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ⊆ { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } |
| 7 |
|
ssfi |
⊢ ( ( { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin ∧ { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ⊆ { 𝑎 ∈ Word 𝐴 ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ) → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin ) |
| 8 |
1 6 7
|
sylancl |
⊢ ( 𝐴 ∈ Fin → { 𝑎 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑎 ) = 𝑇 } ∈ Fin ) |