Metamath Proof Explorer


Theorem chnf

Description: A chain is a zero-based finite sequence with a recoverable upper limit. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnf ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 )

Proof

Step Hyp Ref Expression
1 id ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 ∈ ( < Chain 𝐴 ) )
2 1 chnwrd ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 ∈ Word 𝐴 )
3 wrdf ( 𝐵 ∈ Word 𝐴𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 )
4 2 3 syl ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 )