| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpof1.1 |
⊢ ( 𝜑 → < Po 𝐴 ) |
| 2 |
|
chnpof1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 3 |
|
chnf |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → < Po 𝐴 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → < Po 𝐴 ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 8 |
7 3
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 10 |
|
ffvelcdm |
⊢ ( ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) |
| 12 |
11
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ) |
| 14 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 16 |
|
ffvelcdm |
⊢ ( ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ) |
| 17 |
13 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ) |
| 18 |
12 17
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → ( ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ) ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 22 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 23 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 24 |
|
elfzonn0 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) → 𝑖 ∈ ℕ0 ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ℕ0 ) |
| 26 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) → 𝑗 ∈ ℤ ) |
| 27 |
22 26
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ℤ ) |
| 28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 ) |
| 29 |
25 27 28
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗 ) ) |
| 30 |
|
elfzo0z |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑗 ) ↔ ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗 ) ) |
| 31 |
29 30
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ( 0 ..^ 𝑗 ) ) |
| 32 |
6 21 22 31
|
chnlt |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → ( 𝐵 ‘ 𝑖 ) < ( 𝐵 ‘ 𝑗 ) ) |
| 33 |
|
po2ne |
⊢ ( ( < Po 𝐴 ∧ ( ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ) ∧ ( 𝐵 ‘ 𝑖 ) < ( 𝐵 ‘ 𝑗 ) ) → ( 𝐵 ‘ 𝑖 ) ≠ ( 𝐵 ‘ 𝑗 ) ) |
| 34 |
6 19 32 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → ( 𝐵 ‘ 𝑖 ) ≠ ( 𝐵 ‘ 𝑗 ) ) |
| 35 |
34
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑖 < 𝑗 ) → ¬ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 36 |
35
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝑖 < 𝑗 → ¬ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) ) |
| 37 |
36
|
con2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) → ¬ 𝑖 < 𝑗 ) ) |
| 38 |
37
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) → ¬ 𝑖 < 𝑗 ) |
| 39 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → < Po 𝐴 ) |
| 40 |
17 12
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → ( ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 42 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 43 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 44 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 45 |
|
elfzonn0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) → 𝑗 ∈ ℕ0 ) |
| 46 |
44 45
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ℕ0 ) |
| 47 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) → 𝑖 ∈ ℤ ) |
| 48 |
43 47
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ ℤ ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 < 𝑖 ) |
| 50 |
46 48 49
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑗 ∈ ℕ0 ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖 ) ) |
| 51 |
|
elfzo0z |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑖 ) ↔ ( 𝑗 ∈ ℕ0 ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖 ) ) |
| 52 |
50 51
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ( 0 ..^ 𝑖 ) ) |
| 53 |
39 42 43 52
|
chnlt |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → ( 𝐵 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑖 ) ) |
| 54 |
|
po2ne |
⊢ ( ( < Po 𝐴 ∧ ( ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑖 ) ) → ( 𝐵 ‘ 𝑗 ) ≠ ( 𝐵 ‘ 𝑖 ) ) |
| 55 |
54
|
necomd |
⊢ ( ( < Po 𝐴 ∧ ( ( 𝐵 ‘ 𝑗 ) ∈ 𝐴 ∧ ( 𝐵 ‘ 𝑖 ) ∈ 𝐴 ) ∧ ( 𝐵 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑖 ) ) → ( 𝐵 ‘ 𝑖 ) ≠ ( 𝐵 ‘ 𝑗 ) ) |
| 56 |
39 41 53 55
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → ( 𝐵 ‘ 𝑖 ) ≠ ( 𝐵 ‘ 𝑗 ) ) |
| 57 |
56
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ 𝑗 < 𝑖 ) → ¬ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 58 |
57
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝑗 < 𝑖 → ¬ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) ) |
| 59 |
58
|
con2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) → ¬ 𝑗 < 𝑖 ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) → ¬ 𝑗 < 𝑖 ) |
| 61 |
47
|
zred |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) → 𝑖 ∈ ℝ ) |
| 62 |
26
|
zred |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) → 𝑗 ∈ ℝ ) |
| 63 |
61 62
|
anim12i |
⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) → ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) |
| 66 |
|
lttri4 |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) → ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) ) |
| 68 |
|
3orcoma |
⊢ ( ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) ↔ ( 𝑖 = 𝑗 ∨ 𝑖 < 𝑗 ∨ 𝑗 < 𝑖 ) ) |
| 69 |
67 68
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) → ( 𝑖 = 𝑗 ∨ 𝑖 < 𝑗 ∨ 𝑗 < 𝑖 ) ) |
| 70 |
38 60 69
|
ecase23d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) |
| 71 |
70
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 72 |
71
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ( ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 73 |
4 72
|
jca |
⊢ ( 𝜑 → ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ( ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
| 74 |
|
dff13 |
⊢ ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 ↔ ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ( ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
| 75 |
73 74
|
sylibr |
⊢ ( 𝜑 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 ) |