| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnlt.1 |
⊢ ( 𝜑 → < Po 𝐴 ) |
| 2 |
|
chnlt.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( < Chain 𝐴 ) ) |
| 3 |
|
chnlt.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 4 |
|
chnlt.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐽 ) ) |
| 5 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
| 7 |
2 6
|
pfxchn |
⊢ ( 𝜑 → ( 𝐶 prefix ( 𝐽 + 1 ) ) ∈ ( < Chain 𝐴 ) ) |
| 8 |
|
fzossz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ⊆ ℤ |
| 9 |
8 3
|
sselid |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 10 |
9
|
zcnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
| 11 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 12 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝐴 ) |
| 13 |
|
pfxlen |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) → ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐽 + 1 ) ) |
| 14 |
12 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐽 + 1 ) ) |
| 15 |
10 11 14
|
mvrraddd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) − 1 ) = 𝐽 ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) − 1 ) ) = ( 0 ..^ 𝐽 ) ) |
| 17 |
4 16
|
eleqtrrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) − 1 ) ) ) |
| 18 |
1 7 17
|
chnub |
⊢ ( 𝜑 → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) < ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) ) |
| 19 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ⊆ ℕ0 |
| 20 |
19 3
|
sselid |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
| 21 |
|
fzossfzop1 |
⊢ ( 𝐽 ∈ ℕ0 → ( 0 ..^ 𝐽 ) ⊆ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐽 ) ⊆ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 23 |
22 4
|
sseldd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 24 |
|
pfxfv |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝐼 ) ) |
| 25 |
12 6 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝐼 ) ) |
| 26 |
|
lencl |
⊢ ( 𝐶 ∈ Word 𝐴 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 27 |
12 26
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 28 |
|
fz0add1fz1 |
⊢ ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ0 ∧ 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
| 29 |
27 3 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
| 30 |
|
pfxfvlsw |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) ) |
| 31 |
12 29 30
|
syl2anc |
⊢ ( 𝜑 → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) ) |
| 32 |
10 11
|
pncand |
⊢ ( 𝜑 → ( ( 𝐽 + 1 ) − 1 ) = 𝐽 ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) = ( 𝐶 ‘ 𝐽 ) ) |
| 34 |
31 33
|
eqtrd |
⊢ ( 𝜑 → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ 𝐽 ) ) |
| 35 |
18 25 34
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐼 ) < ( 𝐶 ‘ 𝐽 ) ) |