Step |
Hyp |
Ref |
Expression |
1 |
|
chnlt.1 |
⊢ ( 𝜑 → < Po 𝐴 ) |
2 |
|
chnlt.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( < Chain 𝐴 ) ) |
3 |
|
chnlt.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
4 |
|
chnlt.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐽 ) ) |
5 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
7 |
2 6
|
pfxchn |
⊢ ( 𝜑 → ( 𝐶 prefix ( 𝐽 + 1 ) ) ∈ ( < Chain 𝐴 ) ) |
8 |
|
fzossz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ⊆ ℤ |
9 |
8 3
|
sselid |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
11 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
12 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝐴 ) |
13 |
|
pfxlen |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) → ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐽 + 1 ) ) |
14 |
12 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐽 + 1 ) ) |
15 |
10 11 14
|
mvrraddd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) − 1 ) = 𝐽 ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) − 1 ) ) = ( 0 ..^ 𝐽 ) ) |
17 |
4 16
|
eleqtrrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) − 1 ) ) ) |
18 |
1 7 17
|
chnub |
⊢ ( 𝜑 → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) < ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) ) |
19 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ⊆ ℕ0 |
20 |
19 3
|
sselid |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
21 |
|
fzossfzop1 |
⊢ ( 𝐽 ∈ ℕ0 → ( 0 ..^ 𝐽 ) ⊆ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐽 ) ⊆ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
23 |
22 4
|
sseldd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
24 |
|
pfxfv |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝐼 ) ) |
25 |
12 6 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝐼 ) ) |
26 |
|
lencl |
⊢ ( 𝐶 ∈ Word 𝐴 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
27 |
12 26
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
28 |
|
fz0add1fz1 |
⊢ ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ0 ∧ 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
29 |
27 3 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
30 |
|
pfxfvlsw |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) ) |
31 |
12 29 30
|
syl2anc |
⊢ ( 𝜑 → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) ) |
32 |
10 11
|
pncand |
⊢ ( 𝜑 → ( ( 𝐽 + 1 ) − 1 ) = 𝐽 ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) = ( 𝐶 ‘ 𝐽 ) ) |
34 |
31 33
|
eqtrd |
⊢ ( 𝜑 → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ 𝐽 ) ) |
35 |
18 25 34
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐼 ) < ( 𝐶 ‘ 𝐽 ) ) |