Step |
Hyp |
Ref |
Expression |
1 |
|
chnlt.1 |
|- ( ph -> .< Po A ) |
2 |
|
chnlt.2 |
|- ( ph -> C e. ( .< Chain A ) ) |
3 |
|
chnlt.3 |
|- ( ph -> J e. ( 0 ..^ ( # ` C ) ) ) |
4 |
|
chnlt.4 |
|- ( ph -> I e. ( 0 ..^ J ) ) |
5 |
|
fzofzp1 |
|- ( J e. ( 0 ..^ ( # ` C ) ) -> ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) |
6 |
3 5
|
syl |
|- ( ph -> ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) |
7 |
2 6
|
pfxchn |
|- ( ph -> ( C prefix ( J + 1 ) ) e. ( .< Chain A ) ) |
8 |
|
fzossz |
|- ( 0 ..^ ( # ` C ) ) C_ ZZ |
9 |
8 3
|
sselid |
|- ( ph -> J e. ZZ ) |
10 |
9
|
zcnd |
|- ( ph -> J e. CC ) |
11 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
12 |
2
|
chnwrd |
|- ( ph -> C e. Word A ) |
13 |
|
pfxlen |
|- ( ( C e. Word A /\ ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) -> ( # ` ( C prefix ( J + 1 ) ) ) = ( J + 1 ) ) |
14 |
12 6 13
|
syl2anc |
|- ( ph -> ( # ` ( C prefix ( J + 1 ) ) ) = ( J + 1 ) ) |
15 |
10 11 14
|
mvrraddd |
|- ( ph -> ( ( # ` ( C prefix ( J + 1 ) ) ) - 1 ) = J ) |
16 |
15
|
oveq2d |
|- ( ph -> ( 0 ..^ ( ( # ` ( C prefix ( J + 1 ) ) ) - 1 ) ) = ( 0 ..^ J ) ) |
17 |
4 16
|
eleqtrrd |
|- ( ph -> I e. ( 0 ..^ ( ( # ` ( C prefix ( J + 1 ) ) ) - 1 ) ) ) |
18 |
1 7 17
|
chnub |
|- ( ph -> ( ( C prefix ( J + 1 ) ) ` I ) .< ( lastS ` ( C prefix ( J + 1 ) ) ) ) |
19 |
|
fzo0ssnn0 |
|- ( 0 ..^ ( # ` C ) ) C_ NN0 |
20 |
19 3
|
sselid |
|- ( ph -> J e. NN0 ) |
21 |
|
fzossfzop1 |
|- ( J e. NN0 -> ( 0 ..^ J ) C_ ( 0 ..^ ( J + 1 ) ) ) |
22 |
20 21
|
syl |
|- ( ph -> ( 0 ..^ J ) C_ ( 0 ..^ ( J + 1 ) ) ) |
23 |
22 4
|
sseldd |
|- ( ph -> I e. ( 0 ..^ ( J + 1 ) ) ) |
24 |
|
pfxfv |
|- ( ( C e. Word A /\ ( J + 1 ) e. ( 0 ... ( # ` C ) ) /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> ( ( C prefix ( J + 1 ) ) ` I ) = ( C ` I ) ) |
25 |
12 6 23 24
|
syl3anc |
|- ( ph -> ( ( C prefix ( J + 1 ) ) ` I ) = ( C ` I ) ) |
26 |
|
lencl |
|- ( C e. Word A -> ( # ` C ) e. NN0 ) |
27 |
12 26
|
syl |
|- ( ph -> ( # ` C ) e. NN0 ) |
28 |
|
fz0add1fz1 |
|- ( ( ( # ` C ) e. NN0 /\ J e. ( 0 ..^ ( # ` C ) ) ) -> ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) |
29 |
27 3 28
|
syl2anc |
|- ( ph -> ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) |
30 |
|
pfxfvlsw |
|- ( ( C e. Word A /\ ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) -> ( lastS ` ( C prefix ( J + 1 ) ) ) = ( C ` ( ( J + 1 ) - 1 ) ) ) |
31 |
12 29 30
|
syl2anc |
|- ( ph -> ( lastS ` ( C prefix ( J + 1 ) ) ) = ( C ` ( ( J + 1 ) - 1 ) ) ) |
32 |
10 11
|
pncand |
|- ( ph -> ( ( J + 1 ) - 1 ) = J ) |
33 |
32
|
fveq2d |
|- ( ph -> ( C ` ( ( J + 1 ) - 1 ) ) = ( C ` J ) ) |
34 |
31 33
|
eqtrd |
|- ( ph -> ( lastS ` ( C prefix ( J + 1 ) ) ) = ( C ` J ) ) |
35 |
18 25 34
|
3brtr3d |
|- ( ph -> ( C ` I ) .< ( C ` J ) ) |