| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnub.1 |
|- ( ph -> .< Po A ) |
| 2 |
|
chnub.2 |
|- ( ph -> C e. ( .< Chain A ) ) |
| 3 |
|
chnub.3 |
|- ( ph -> I e. ( 0 ..^ ( ( # ` C ) - 1 ) ) ) |
| 4 |
|
fveq2 |
|- ( i = I -> ( C ` i ) = ( C ` I ) ) |
| 5 |
4
|
breq1d |
|- ( i = I -> ( ( C ` i ) .< ( lastS ` C ) <-> ( C ` I ) .< ( lastS ` C ) ) ) |
| 6 |
|
fveq2 |
|- ( c = (/) -> ( # ` c ) = ( # ` (/) ) ) |
| 7 |
6
|
oveq1d |
|- ( c = (/) -> ( ( # ` c ) - 1 ) = ( ( # ` (/) ) - 1 ) ) |
| 8 |
7
|
oveq2d |
|- ( c = (/) -> ( 0 ..^ ( ( # ` c ) - 1 ) ) = ( 0 ..^ ( ( # ` (/) ) - 1 ) ) ) |
| 9 |
|
fveq1 |
|- ( c = (/) -> ( c ` i ) = ( (/) ` i ) ) |
| 10 |
|
fveq2 |
|- ( c = (/) -> ( lastS ` c ) = ( lastS ` (/) ) ) |
| 11 |
9 10
|
breq12d |
|- ( c = (/) -> ( ( c ` i ) .< ( lastS ` c ) <-> ( (/) ` i ) .< ( lastS ` (/) ) ) ) |
| 12 |
8 11
|
raleqbidv |
|- ( c = (/) -> ( A. i e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` i ) .< ( lastS ` c ) <-> A. i e. ( 0 ..^ ( ( # ` (/) ) - 1 ) ) ( (/) ` i ) .< ( lastS ` (/) ) ) ) |
| 13 |
|
fveq2 |
|- ( c = d -> ( # ` c ) = ( # ` d ) ) |
| 14 |
13
|
oveq1d |
|- ( c = d -> ( ( # ` c ) - 1 ) = ( ( # ` d ) - 1 ) ) |
| 15 |
14
|
oveq2d |
|- ( c = d -> ( 0 ..^ ( ( # ` c ) - 1 ) ) = ( 0 ..^ ( ( # ` d ) - 1 ) ) ) |
| 16 |
|
fveq1 |
|- ( c = d -> ( c ` i ) = ( d ` i ) ) |
| 17 |
|
fveq2 |
|- ( c = d -> ( lastS ` c ) = ( lastS ` d ) ) |
| 18 |
16 17
|
breq12d |
|- ( c = d -> ( ( c ` i ) .< ( lastS ` c ) <-> ( d ` i ) .< ( lastS ` d ) ) ) |
| 19 |
15 18
|
raleqbidv |
|- ( c = d -> ( A. i e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` i ) .< ( lastS ` c ) <-> A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) ) |
| 20 |
|
fveq2 |
|- ( i = j -> ( c ` i ) = ( c ` j ) ) |
| 21 |
20
|
breq1d |
|- ( i = j -> ( ( c ` i ) .< ( lastS ` c ) <-> ( c ` j ) .< ( lastS ` c ) ) ) |
| 22 |
21
|
cbvralvw |
|- ( A. i e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` i ) .< ( lastS ` c ) <-> A. j e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` j ) .< ( lastS ` c ) ) |
| 23 |
|
fveq2 |
|- ( c = ( d ++ <" x "> ) -> ( # ` c ) = ( # ` ( d ++ <" x "> ) ) ) |
| 24 |
23
|
oveq1d |
|- ( c = ( d ++ <" x "> ) -> ( ( # ` c ) - 1 ) = ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) |
| 25 |
24
|
oveq2d |
|- ( c = ( d ++ <" x "> ) -> ( 0 ..^ ( ( # ` c ) - 1 ) ) = ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) |
| 26 |
|
fveq1 |
|- ( c = ( d ++ <" x "> ) -> ( c ` j ) = ( ( d ++ <" x "> ) ` j ) ) |
| 27 |
|
fveq2 |
|- ( c = ( d ++ <" x "> ) -> ( lastS ` c ) = ( lastS ` ( d ++ <" x "> ) ) ) |
| 28 |
26 27
|
breq12d |
|- ( c = ( d ++ <" x "> ) -> ( ( c ` j ) .< ( lastS ` c ) <-> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) ) |
| 29 |
25 28
|
raleqbidv |
|- ( c = ( d ++ <" x "> ) -> ( A. j e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` j ) .< ( lastS ` c ) <-> A. j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) ) |
| 30 |
22 29
|
bitrid |
|- ( c = ( d ++ <" x "> ) -> ( A. i e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` i ) .< ( lastS ` c ) <-> A. j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) ) |
| 31 |
|
fveq2 |
|- ( c = C -> ( # ` c ) = ( # ` C ) ) |
| 32 |
31
|
oveq1d |
|- ( c = C -> ( ( # ` c ) - 1 ) = ( ( # ` C ) - 1 ) ) |
| 33 |
32
|
oveq2d |
|- ( c = C -> ( 0 ..^ ( ( # ` c ) - 1 ) ) = ( 0 ..^ ( ( # ` C ) - 1 ) ) ) |
| 34 |
|
fveq1 |
|- ( c = C -> ( c ` i ) = ( C ` i ) ) |
| 35 |
|
fveq2 |
|- ( c = C -> ( lastS ` c ) = ( lastS ` C ) ) |
| 36 |
34 35
|
breq12d |
|- ( c = C -> ( ( c ` i ) .< ( lastS ` c ) <-> ( C ` i ) .< ( lastS ` C ) ) ) |
| 37 |
33 36
|
raleqbidv |
|- ( c = C -> ( A. i e. ( 0 ..^ ( ( # ` c ) - 1 ) ) ( c ` i ) .< ( lastS ` c ) <-> A. i e. ( 0 ..^ ( ( # ` C ) - 1 ) ) ( C ` i ) .< ( lastS ` C ) ) ) |
| 38 |
|
ral0 |
|- A. i e. (/) ( (/) ` i ) .< ( lastS ` (/) ) |
| 39 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 40 |
39
|
oveq1i |
|- ( ( # ` (/) ) - 1 ) = ( 0 - 1 ) |
| 41 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 42 |
|
neg1rr |
|- -u 1 e. RR |
| 43 |
|
0re |
|- 0 e. RR |
| 44 |
|
neg1lt0 |
|- -u 1 < 0 |
| 45 |
42 43 44
|
ltleii |
|- -u 1 <_ 0 |
| 46 |
41 45
|
eqbrtrri |
|- ( 0 - 1 ) <_ 0 |
| 47 |
40 46
|
eqbrtri |
|- ( ( # ` (/) ) - 1 ) <_ 0 |
| 48 |
|
0z |
|- 0 e. ZZ |
| 49 |
39 48
|
eqeltri |
|- ( # ` (/) ) e. ZZ |
| 50 |
|
1z |
|- 1 e. ZZ |
| 51 |
|
zsubcl |
|- ( ( ( # ` (/) ) e. ZZ /\ 1 e. ZZ ) -> ( ( # ` (/) ) - 1 ) e. ZZ ) |
| 52 |
49 50 51
|
mp2an |
|- ( ( # ` (/) ) - 1 ) e. ZZ |
| 53 |
|
fzon |
|- ( ( 0 e. ZZ /\ ( ( # ` (/) ) - 1 ) e. ZZ ) -> ( ( ( # ` (/) ) - 1 ) <_ 0 <-> ( 0 ..^ ( ( # ` (/) ) - 1 ) ) = (/) ) ) |
| 54 |
48 52 53
|
mp2an |
|- ( ( ( # ` (/) ) - 1 ) <_ 0 <-> ( 0 ..^ ( ( # ` (/) ) - 1 ) ) = (/) ) |
| 55 |
47 54
|
mpbi |
|- ( 0 ..^ ( ( # ` (/) ) - 1 ) ) = (/) |
| 56 |
55
|
raleqi |
|- ( A. i e. ( 0 ..^ ( ( # ` (/) ) - 1 ) ) ( (/) ` i ) .< ( lastS ` (/) ) <-> A. i e. (/) ( (/) ` i ) .< ( lastS ` (/) ) ) |
| 57 |
38 56
|
mpbir |
|- A. i e. ( 0 ..^ ( ( # ` (/) ) - 1 ) ) ( (/) ` i ) .< ( lastS ` (/) ) |
| 58 |
57
|
a1i |
|- ( ph -> A. i e. ( 0 ..^ ( ( # ` (/) ) - 1 ) ) ( (/) ` i ) .< ( lastS ` (/) ) ) |
| 59 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> d e. ( .< Chain A ) ) |
| 60 |
59
|
chnwrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> d e. Word A ) |
| 61 |
|
ccatws1len |
|- ( d e. Word A -> ( # ` ( d ++ <" x "> ) ) = ( ( # ` d ) + 1 ) ) |
| 62 |
60 61
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( # ` ( d ++ <" x "> ) ) = ( ( # ` d ) + 1 ) ) |
| 63 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> d = (/) ) |
| 64 |
63
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( # ` d ) = ( # ` (/) ) ) |
| 65 |
64 39
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( # ` d ) = 0 ) |
| 66 |
65
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( ( # ` d ) + 1 ) = ( 0 + 1 ) ) |
| 67 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 68 |
67
|
a1i |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( 0 + 1 ) = 1 ) |
| 69 |
62 66 68
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( # ` ( d ++ <" x "> ) ) = 1 ) |
| 70 |
69
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( ( # ` ( d ++ <" x "> ) ) - 1 ) = ( 1 - 1 ) ) |
| 71 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 72 |
70 71
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( ( # ` ( d ++ <" x "> ) ) - 1 ) = 0 ) |
| 73 |
72
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) = ( 0 ..^ 0 ) ) |
| 74 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 75 |
73 74
|
eqtrdi |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) = (/) ) |
| 76 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) |
| 77 |
76
|
ne0d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) =/= (/) ) |
| 78 |
75 77
|
pm2.21ddne |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d = (/) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 79 |
1
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> .< Po A ) |
| 80 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> d e. ( .< Chain A ) ) |
| 81 |
80
|
chnwrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> d e. Word A ) |
| 82 |
81
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> d e. Word A ) |
| 83 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> x e. A ) |
| 84 |
83
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> x e. A ) |
| 85 |
|
ccatws1cl |
|- ( ( d e. Word A /\ x e. A ) -> ( d ++ <" x "> ) e. Word A ) |
| 86 |
82 84 85
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( d ++ <" x "> ) e. Word A ) |
| 87 |
|
lencl |
|- ( d e. Word A -> ( # ` d ) e. NN0 ) |
| 88 |
81 87
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) e. NN0 ) |
| 89 |
88
|
nn0zd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) e. ZZ ) |
| 90 |
|
1zzd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> 1 e. ZZ ) |
| 91 |
89 90
|
zsubcld |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) - 1 ) e. ZZ ) |
| 92 |
89
|
peano2zd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) + 1 ) e. ZZ ) |
| 93 |
91
|
zred |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) - 1 ) e. RR ) |
| 94 |
92
|
zred |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) + 1 ) e. RR ) |
| 95 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> d =/= (/) ) |
| 96 |
|
hasheq0 |
|- ( d e. Word A -> ( ( # ` d ) = 0 <-> d = (/) ) ) |
| 97 |
96
|
necon3bid |
|- ( d e. Word A -> ( ( # ` d ) =/= 0 <-> d =/= (/) ) ) |
| 98 |
97
|
biimpar |
|- ( ( d e. Word A /\ d =/= (/) ) -> ( # ` d ) =/= 0 ) |
| 99 |
81 95 98
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) =/= 0 ) |
| 100 |
|
elnnne0 |
|- ( ( # ` d ) e. NN <-> ( ( # ` d ) e. NN0 /\ ( # ` d ) =/= 0 ) ) |
| 101 |
88 99 100
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) e. NN ) |
| 102 |
101
|
nnred |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) e. RR ) |
| 103 |
102
|
ltm1d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) - 1 ) < ( # ` d ) ) |
| 104 |
102
|
ltp1d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) < ( ( # ` d ) + 1 ) ) |
| 105 |
93 102 94 103 104
|
lttrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) - 1 ) < ( ( # ` d ) + 1 ) ) |
| 106 |
93 94 105
|
ltled |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) - 1 ) <_ ( ( # ` d ) + 1 ) ) |
| 107 |
|
eluz2 |
|- ( ( ( # ` d ) + 1 ) e. ( ZZ>= ` ( ( # ` d ) - 1 ) ) <-> ( ( ( # ` d ) - 1 ) e. ZZ /\ ( ( # ` d ) + 1 ) e. ZZ /\ ( ( # ` d ) - 1 ) <_ ( ( # ` d ) + 1 ) ) ) |
| 108 |
91 92 106 107
|
syl3anbrc |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` d ) + 1 ) e. ( ZZ>= ` ( ( # ` d ) - 1 ) ) ) |
| 109 |
|
fzoss2 |
|- ( ( ( # ` d ) + 1 ) e. ( ZZ>= ` ( ( # ` d ) - 1 ) ) -> ( 0 ..^ ( ( # ` d ) - 1 ) ) C_ ( 0 ..^ ( ( # ` d ) + 1 ) ) ) |
| 110 |
108 109
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( 0 ..^ ( ( # ` d ) - 1 ) ) C_ ( 0 ..^ ( ( # ` d ) + 1 ) ) ) |
| 111 |
110
|
sselda |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> j e. ( 0 ..^ ( ( # ` d ) + 1 ) ) ) |
| 112 |
82 61
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( # ` ( d ++ <" x "> ) ) = ( ( # ` d ) + 1 ) ) |
| 113 |
112
|
oveq2d |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( 0 ..^ ( # ` ( d ++ <" x "> ) ) ) = ( 0 ..^ ( ( # ` d ) + 1 ) ) ) |
| 114 |
111 113
|
eleqtrrd |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> j e. ( 0 ..^ ( # ` ( d ++ <" x "> ) ) ) ) |
| 115 |
|
wrdsymbcl |
|- ( ( ( d ++ <" x "> ) e. Word A /\ j e. ( 0 ..^ ( # ` ( d ++ <" x "> ) ) ) ) -> ( ( d ++ <" x "> ) ` j ) e. A ) |
| 116 |
86 114 115
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( ( d ++ <" x "> ) ` j ) e. A ) |
| 117 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> d =/= (/) ) |
| 118 |
|
lswcl |
|- ( ( d e. Word A /\ d =/= (/) ) -> ( lastS ` d ) e. A ) |
| 119 |
82 117 118
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( lastS ` d ) e. A ) |
| 120 |
|
lswccats1 |
|- ( ( d e. Word A /\ x e. A ) -> ( lastS ` ( d ++ <" x "> ) ) = x ) |
| 121 |
81 83 120
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( lastS ` ( d ++ <" x "> ) ) = x ) |
| 122 |
121
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( lastS ` ( d ++ <" x "> ) ) = x ) |
| 123 |
122 84
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( lastS ` ( d ++ <" x "> ) ) e. A ) |
| 124 |
116 119 123
|
3jca |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( ( ( d ++ <" x "> ) ` j ) e. A /\ ( lastS ` d ) e. A /\ ( lastS ` ( d ++ <" x "> ) ) e. A ) ) |
| 125 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) |
| 126 |
61
|
oveq1d |
|- ( d e. Word A -> ( ( # ` ( d ++ <" x "> ) ) - 1 ) = ( ( ( # ` d ) + 1 ) - 1 ) ) |
| 127 |
81 126
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` ( d ++ <" x "> ) ) - 1 ) = ( ( ( # ` d ) + 1 ) - 1 ) ) |
| 128 |
101
|
nncnd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) e. CC ) |
| 129 |
|
1cnd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> 1 e. CC ) |
| 130 |
128 129
|
pncand |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( ( # ` d ) + 1 ) - 1 ) = ( # ` d ) ) |
| 131 |
127 130
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( # ` ( d ++ <" x "> ) ) - 1 ) = ( # ` d ) ) |
| 132 |
131
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) = ( 0 ..^ ( # ` d ) ) ) |
| 133 |
125 132
|
eleqtrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> j e. ( 0 ..^ ( # ` d ) ) ) |
| 134 |
133
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> j e. ( 0 ..^ ( # ` d ) ) ) |
| 135 |
|
ccats1val1 |
|- ( ( d e. Word A /\ j e. ( 0 ..^ ( # ` d ) ) ) -> ( ( d ++ <" x "> ) ` j ) = ( d ` j ) ) |
| 136 |
82 134 135
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( ( d ++ <" x "> ) ` j ) = ( d ` j ) ) |
| 137 |
|
fveq2 |
|- ( i = j -> ( d ` i ) = ( d ` j ) ) |
| 138 |
137
|
breq1d |
|- ( i = j -> ( ( d ` i ) .< ( lastS ` d ) <-> ( d ` j ) .< ( lastS ` d ) ) ) |
| 139 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) |
| 140 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) |
| 141 |
138 139 140
|
rspcdva |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( d ` j ) .< ( lastS ` d ) ) |
| 142 |
136 141
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` d ) ) |
| 143 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( d = (/) \/ ( lastS ` d ) .< x ) ) |
| 144 |
95
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> -. d = (/) ) |
| 145 |
143 144
|
orcnd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( lastS ` d ) .< x ) |
| 146 |
145
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( lastS ` d ) .< x ) |
| 147 |
146 122
|
breqtrrd |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( lastS ` d ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 148 |
|
potr |
|- ( ( .< Po A /\ ( ( ( d ++ <" x "> ) ` j ) e. A /\ ( lastS ` d ) e. A /\ ( lastS ` ( d ++ <" x "> ) ) e. A ) ) -> ( ( ( ( d ++ <" x "> ) ` j ) .< ( lastS ` d ) /\ ( lastS ` d ) .< ( lastS ` ( d ++ <" x "> ) ) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) ) |
| 149 |
148
|
imp |
|- ( ( ( .< Po A /\ ( ( ( d ++ <" x "> ) ` j ) e. A /\ ( lastS ` d ) e. A /\ ( lastS ` ( d ++ <" x "> ) ) e. A ) ) /\ ( ( ( d ++ <" x "> ) ` j ) .< ( lastS ` d ) /\ ( lastS ` d ) .< ( lastS ` ( d ++ <" x "> ) ) ) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 150 |
79 124 142 147 149
|
syl22anc |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 151 |
145
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( lastS ` d ) .< x ) |
| 152 |
81
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> d e. Word A ) |
| 153 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> x e. A ) |
| 154 |
153
|
s1cld |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> <" x "> e. Word A ) |
| 155 |
101
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( # ` d ) e. NN ) |
| 156 |
|
fzo0end |
|- ( ( # ` d ) e. NN -> ( ( # ` d ) - 1 ) e. ( 0 ..^ ( # ` d ) ) ) |
| 157 |
155 156
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( ( # ` d ) - 1 ) e. ( 0 ..^ ( # ` d ) ) ) |
| 158 |
|
ccatval1 |
|- ( ( d e. Word A /\ <" x "> e. Word A /\ ( ( # ` d ) - 1 ) e. ( 0 ..^ ( # ` d ) ) ) -> ( ( d ++ <" x "> ) ` ( ( # ` d ) - 1 ) ) = ( d ` ( ( # ` d ) - 1 ) ) ) |
| 159 |
152 154 157 158
|
syl3anc |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( ( d ++ <" x "> ) ` ( ( # ` d ) - 1 ) ) = ( d ` ( ( # ` d ) - 1 ) ) ) |
| 160 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> j = ( ( # ` d ) - 1 ) ) |
| 161 |
160
|
fveq2d |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( ( d ++ <" x "> ) ` j ) = ( ( d ++ <" x "> ) ` ( ( # ` d ) - 1 ) ) ) |
| 162 |
|
lsw |
|- ( d e. Word A -> ( lastS ` d ) = ( d ` ( ( # ` d ) - 1 ) ) ) |
| 163 |
152 162
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( lastS ` d ) = ( d ` ( ( # ` d ) - 1 ) ) ) |
| 164 |
159 161 163
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( ( d ++ <" x "> ) ` j ) = ( lastS ` d ) ) |
| 165 |
121
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( lastS ` ( d ++ <" x "> ) ) = x ) |
| 166 |
151 164 165
|
3brtr4d |
|- ( ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) /\ j = ( ( # ` d ) - 1 ) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 167 |
67
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 168 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 169 |
167 168
|
eqtr4i |
|- ( ZZ>= ` ( 0 + 1 ) ) = NN |
| 170 |
101 169
|
eleqtrrdi |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( # ` d ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 171 |
|
fzosplitsnm1 |
|- ( ( 0 e. ZZ /\ ( # ` d ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ ( # ` d ) ) = ( ( 0 ..^ ( ( # ` d ) - 1 ) ) u. { ( ( # ` d ) - 1 ) } ) ) |
| 172 |
48 170 171
|
sylancr |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( 0 ..^ ( # ` d ) ) = ( ( 0 ..^ ( ( # ` d ) - 1 ) ) u. { ( ( # ` d ) - 1 ) } ) ) |
| 173 |
133 172
|
eleqtrd |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> j e. ( ( 0 ..^ ( ( # ` d ) - 1 ) ) u. { ( ( # ` d ) - 1 ) } ) ) |
| 174 |
|
elunsn |
|- ( j e. ( ( 0 ..^ ( ( # ` d ) - 1 ) ) u. { ( ( # ` d ) - 1 ) } ) -> ( j e. ( ( 0 ..^ ( ( # ` d ) - 1 ) ) u. { ( ( # ` d ) - 1 ) } ) <-> ( j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) \/ j = ( ( # ` d ) - 1 ) ) ) ) |
| 175 |
174
|
ibi |
|- ( j e. ( ( 0 ..^ ( ( # ` d ) - 1 ) ) u. { ( ( # ` d ) - 1 ) } ) -> ( j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) \/ j = ( ( # ` d ) - 1 ) ) ) |
| 176 |
173 175
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( j e. ( 0 ..^ ( ( # ` d ) - 1 ) ) \/ j = ( ( # ` d ) - 1 ) ) ) |
| 177 |
150 166 176
|
mpjaodan |
|- ( ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) /\ d =/= (/) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 178 |
78 177
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) /\ j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ) -> ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 179 |
178
|
ralrimiva |
|- ( ( ( ( ( ph /\ d e. ( .< Chain A ) ) /\ x e. A ) /\ ( d = (/) \/ ( lastS ` d ) .< x ) ) /\ A. i e. ( 0 ..^ ( ( # ` d ) - 1 ) ) ( d ` i ) .< ( lastS ` d ) ) -> A. j e. ( 0 ..^ ( ( # ` ( d ++ <" x "> ) ) - 1 ) ) ( ( d ++ <" x "> ) ` j ) .< ( lastS ` ( d ++ <" x "> ) ) ) |
| 180 |
12 19 30 37 2 58 179
|
chnind |
|- ( ph -> A. i e. ( 0 ..^ ( ( # ` C ) - 1 ) ) ( C ` i ) .< ( lastS ` C ) ) |
| 181 |
5 180 3
|
rspcdva |
|- ( ph -> ( C ` I ) .< ( lastS ` C ) ) |