| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> ( # ` C ) = ( # ` C ) ) |
| 2 |
|
ischn |
|- ( C e. ( .< Chain A ) <-> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) ) |
| 3 |
2
|
biimpi |
|- ( C e. ( .< Chain A ) -> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) ) |
| 4 |
3
|
adantl |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) ) |
| 5 |
4
|
simpld |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> C e. Word A ) |
| 6 |
1 5
|
wrdfd |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> C : ( 0 ..^ ( # ` C ) ) --> A ) |
| 7 |
6
|
frnd |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> ran C C_ A ) |
| 8 |
|
simpl |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> .< Po A ) |
| 9 |
|
poss |
|- ( ran C C_ A -> ( .< Po A -> .< Po ran C ) ) |
| 10 |
7 8 9
|
sylc |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> .< Po ran C ) |
| 11 |
|
fzossz |
|- ( 0 ..^ ( # ` C ) ) C_ ZZ |
| 12 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> i e. ( 0 ..^ ( # ` C ) ) ) |
| 13 |
11 12
|
sselid |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> i e. ZZ ) |
| 14 |
13
|
zred |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> i e. RR ) |
| 15 |
|
simplr |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> j e. ( 0 ..^ ( # ` C ) ) ) |
| 16 |
11 15
|
sselid |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> j e. ZZ ) |
| 17 |
16
|
zred |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> j e. RR ) |
| 18 |
14 17
|
lttri4d |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> ( i < j \/ i = j \/ j < i ) ) |
| 19 |
|
simp-8l |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> .< Po A ) |
| 20 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> C e. ( .< Chain A ) ) |
| 21 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> j e. ( 0 ..^ ( # ` C ) ) ) |
| 22 |
|
elfzouz |
|- ( i e. ( 0 ..^ ( # ` C ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 23 |
22
|
ad5antlr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> i e. ( ZZ>= ` 0 ) ) |
| 24 |
16
|
adantr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> j e. ZZ ) |
| 25 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> i < j ) |
| 26 |
|
elfzo2 |
|- ( i e. ( 0 ..^ j ) <-> ( i e. ( ZZ>= ` 0 ) /\ j e. ZZ /\ i < j ) ) |
| 27 |
23 24 25 26
|
syl3anbrc |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> i e. ( 0 ..^ j ) ) |
| 28 |
19 20 21 27
|
chnlt |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> ( C ` i ) .< ( C ` j ) ) |
| 29 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> ( C ` i ) = x ) |
| 30 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> ( C ` j ) = y ) |
| 31 |
28 29 30
|
3brtr3d |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i < j ) -> x .< y ) |
| 32 |
31
|
ex |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> ( i < j -> x .< y ) ) |
| 33 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i = j ) -> i = j ) |
| 34 |
33
|
fveq2d |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i = j ) -> ( C ` i ) = ( C ` j ) ) |
| 35 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i = j ) -> ( C ` i ) = x ) |
| 36 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i = j ) -> ( C ` j ) = y ) |
| 37 |
34 35 36
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ i = j ) -> x = y ) |
| 38 |
37
|
ex |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> ( i = j -> x = y ) ) |
| 39 |
|
simp-8l |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> .< Po A ) |
| 40 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> C e. ( .< Chain A ) ) |
| 41 |
12
|
adantr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> i e. ( 0 ..^ ( # ` C ) ) ) |
| 42 |
|
elfzouz |
|- ( j e. ( 0 ..^ ( # ` C ) ) -> j e. ( ZZ>= ` 0 ) ) |
| 43 |
42
|
ad3antlr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> j e. ( ZZ>= ` 0 ) ) |
| 44 |
13
|
adantr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> i e. ZZ ) |
| 45 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> j < i ) |
| 46 |
|
elfzo2 |
|- ( j e. ( 0 ..^ i ) <-> ( j e. ( ZZ>= ` 0 ) /\ i e. ZZ /\ j < i ) ) |
| 47 |
43 44 45 46
|
syl3anbrc |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> j e. ( 0 ..^ i ) ) |
| 48 |
39 40 41 47
|
chnlt |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> ( C ` j ) .< ( C ` i ) ) |
| 49 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> ( C ` j ) = y ) |
| 50 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> ( C ` i ) = x ) |
| 51 |
48 49 50
|
3brtr3d |
|- ( ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) /\ j < i ) -> y .< x ) |
| 52 |
51
|
ex |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> ( j < i -> y .< x ) ) |
| 53 |
32 38 52
|
3orim123d |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> ( ( i < j \/ i = j \/ j < i ) -> ( x .< y \/ x = y \/ y .< x ) ) ) |
| 54 |
18 53
|
mpd |
|- ( ( ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) /\ j e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` j ) = y ) -> ( x .< y \/ x = y \/ y .< x ) ) |
| 55 |
6
|
ffnd |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> C Fn ( 0 ..^ ( # ` C ) ) ) |
| 56 |
55
|
ad4antr |
|- ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) -> C Fn ( 0 ..^ ( # ` C ) ) ) |
| 57 |
|
simpllr |
|- ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) -> y e. ran C ) |
| 58 |
|
fvelrnb |
|- ( C Fn ( 0 ..^ ( # ` C ) ) -> ( y e. ran C <-> E. j e. ( 0 ..^ ( # ` C ) ) ( C ` j ) = y ) ) |
| 59 |
58
|
biimpa |
|- ( ( C Fn ( 0 ..^ ( # ` C ) ) /\ y e. ran C ) -> E. j e. ( 0 ..^ ( # ` C ) ) ( C ` j ) = y ) |
| 60 |
56 57 59
|
syl2anc |
|- ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) -> E. j e. ( 0 ..^ ( # ` C ) ) ( C ` j ) = y ) |
| 61 |
54 60
|
r19.29a |
|- ( ( ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) /\ i e. ( 0 ..^ ( # ` C ) ) ) /\ ( C ` i ) = x ) -> ( x .< y \/ x = y \/ y .< x ) ) |
| 62 |
55
|
ad2antrr |
|- ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) -> C Fn ( 0 ..^ ( # ` C ) ) ) |
| 63 |
|
simplr |
|- ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) -> x e. ran C ) |
| 64 |
|
fvelrnb |
|- ( C Fn ( 0 ..^ ( # ` C ) ) -> ( x e. ran C <-> E. i e. ( 0 ..^ ( # ` C ) ) ( C ` i ) = x ) ) |
| 65 |
64
|
biimpa |
|- ( ( C Fn ( 0 ..^ ( # ` C ) ) /\ x e. ran C ) -> E. i e. ( 0 ..^ ( # ` C ) ) ( C ` i ) = x ) |
| 66 |
62 63 65
|
syl2anc |
|- ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) -> E. i e. ( 0 ..^ ( # ` C ) ) ( C ` i ) = x ) |
| 67 |
61 66
|
r19.29a |
|- ( ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ x e. ran C ) /\ y e. ran C ) -> ( x .< y \/ x = y \/ y .< x ) ) |
| 68 |
67
|
anasss |
|- ( ( ( .< Po A /\ C e. ( .< Chain A ) ) /\ ( x e. ran C /\ y e. ran C ) ) -> ( x .< y \/ x = y \/ y .< x ) ) |
| 69 |
10 68
|
issod |
|- ( ( .< Po A /\ C e. ( .< Chain A ) ) -> .< Or ran C ) |