Metamath Proof Explorer


Theorem chnso

Description: A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Assertion chnso < ˙ Po A C Chain A < ˙ < ˙ Or ran C

Proof

Step Hyp Ref Expression
1 eqidd < ˙ Po A C Chain A < ˙ C = C
2 ischn C Chain A < ˙ C Word A n dom C 0 C n 1 < ˙ C n
3 2 biimpi C Chain A < ˙ C Word A n dom C 0 C n 1 < ˙ C n
4 3 adantl < ˙ Po A C Chain A < ˙ C Word A n dom C 0 C n 1 < ˙ C n
5 4 simpld < ˙ Po A C Chain A < ˙ C Word A
6 1 5 wrdfd < ˙ Po A C Chain A < ˙ C : 0 ..^ C A
7 6 frnd < ˙ Po A C Chain A < ˙ ran C A
8 simpl < ˙ Po A C Chain A < ˙ < ˙ Po A
9 poss ran C A < ˙ Po A < ˙ Po ran C
10 7 8 9 sylc < ˙ Po A C Chain A < ˙ < ˙ Po ran C
11 fzossz 0 ..^ C
12 simp-4r < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i 0 ..^ C
13 11 12 sselid < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i
14 13 zred < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i
15 simplr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j 0 ..^ C
16 11 15 sselid < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j
17 16 zred < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j
18 14 17 lttri4d < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j i = j j < i
19 simp-8l < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j < ˙ Po A
20 simp-8r < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j C Chain A < ˙
21 simpllr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j j 0 ..^ C
22 elfzouz i 0 ..^ C i 0
23 22 ad5antlr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j i 0
24 16 adantr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j j
25 simpr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j i < j
26 elfzo2 i 0 ..^ j i 0 j i < j
27 23 24 25 26 syl3anbrc < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j i 0 ..^ j
28 19 20 21 27 chnlt < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j C i < ˙ C j
29 simp-4r < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j C i = x
30 simplr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j C j = y
31 28 29 30 3brtr3d < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j x < ˙ y
32 31 ex < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j x < ˙ y
33 simpr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i = j i = j
34 33 fveq2d < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i = j C i = C j
35 simp-4r < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i = j C i = x
36 simplr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i = j C j = y
37 34 35 36 3eqtr3d < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i = j x = y
38 37 ex < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i = j x = y
39 simp-8l < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i < ˙ Po A
40 simp-8r < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i C Chain A < ˙
41 12 adantr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i i 0 ..^ C
42 elfzouz j 0 ..^ C j 0
43 42 ad3antlr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i j 0
44 13 adantr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i i
45 simpr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i j < i
46 elfzo2 j 0 ..^ i j 0 i j < i
47 43 44 45 46 syl3anbrc < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i j 0 ..^ i
48 39 40 41 47 chnlt < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i C j < ˙ C i
49 simplr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i C j = y
50 simp-4r < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i C i = x
51 48 49 50 3brtr3d < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i y < ˙ x
52 51 ex < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y j < i y < ˙ x
53 32 38 52 3orim123d < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y i < j i = j j < i x < ˙ y x = y y < ˙ x
54 18 53 mpd < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y x < ˙ y x = y y < ˙ x
55 6 ffnd < ˙ Po A C Chain A < ˙ C Fn 0 ..^ C
56 55 ad4antr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x C Fn 0 ..^ C
57 simpllr < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x y ran C
58 fvelrnb C Fn 0 ..^ C y ran C j 0 ..^ C C j = y
59 58 biimpa C Fn 0 ..^ C y ran C j 0 ..^ C C j = y
60 56 57 59 syl2anc < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x j 0 ..^ C C j = y
61 54 60 r19.29a < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x x < ˙ y x = y y < ˙ x
62 55 ad2antrr < ˙ Po A C Chain A < ˙ x ran C y ran C C Fn 0 ..^ C
63 simplr < ˙ Po A C Chain A < ˙ x ran C y ran C x ran C
64 fvelrnb C Fn 0 ..^ C x ran C i 0 ..^ C C i = x
65 64 biimpa C Fn 0 ..^ C x ran C i 0 ..^ C C i = x
66 62 63 65 syl2anc < ˙ Po A C Chain A < ˙ x ran C y ran C i 0 ..^ C C i = x
67 61 66 r19.29a < ˙ Po A C Chain A < ˙ x ran C y ran C x < ˙ y x = y y < ˙ x
68 67 anasss < ˙ Po A C Chain A < ˙ x ran C y ran C x < ˙ y x = y y < ˙ x
69 10 68 issod < ˙ Po A C Chain A < ˙ < ˙ Or ran C