Metamath Proof Explorer


Theorem chnlt

Description: Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses chnlt.1 φ < ˙ Po A
chnlt.2 φ C Chain A < ˙
chnlt.3 φ J 0 ..^ C
chnlt.4 φ I 0 ..^ J
Assertion chnlt φ C I < ˙ C J

Proof

Step Hyp Ref Expression
1 chnlt.1 φ < ˙ Po A
2 chnlt.2 φ C Chain A < ˙
3 chnlt.3 φ J 0 ..^ C
4 chnlt.4 φ I 0 ..^ J
5 fzofzp1 J 0 ..^ C J + 1 0 C
6 3 5 syl φ J + 1 0 C
7 2 6 pfxchn φ C prefix J + 1 Chain A < ˙
8 fzossz 0 ..^ C
9 8 3 sselid φ J
10 9 zcnd φ J
11 1cnd φ 1
12 2 chnwrd φ C Word A
13 pfxlen C Word A J + 1 0 C C prefix J + 1 = J + 1
14 12 6 13 syl2anc φ C prefix J + 1 = J + 1
15 10 11 14 mvrraddd φ C prefix J + 1 1 = J
16 15 oveq2d φ 0 ..^ C prefix J + 1 1 = 0 ..^ J
17 4 16 eleqtrrd φ I 0 ..^ C prefix J + 1 1
18 1 7 17 chnub φ C prefix J + 1 I < ˙ lastS C prefix J + 1
19 fzo0ssnn0 0 ..^ C 0
20 19 3 sselid φ J 0
21 fzossfzop1 J 0 0 ..^ J 0 ..^ J + 1
22 20 21 syl φ 0 ..^ J 0 ..^ J + 1
23 22 4 sseldd φ I 0 ..^ J + 1
24 pfxfv C Word A J + 1 0 C I 0 ..^ J + 1 C prefix J + 1 I = C I
25 12 6 23 24 syl3anc φ C prefix J + 1 I = C I
26 lencl C Word A C 0
27 12 26 syl φ C 0
28 fz0add1fz1 C 0 J 0 ..^ C J + 1 1 C
29 27 3 28 syl2anc φ J + 1 1 C
30 pfxfvlsw C Word A J + 1 1 C lastS C prefix J + 1 = C J + 1 - 1
31 12 29 30 syl2anc φ lastS C prefix J + 1 = C J + 1 - 1
32 10 11 pncand φ J + 1 - 1 = J
33 32 fveq2d φ C J + 1 - 1 = C J
34 31 33 eqtrd φ lastS C prefix J + 1 = C J
35 18 25 34 3brtr3d φ C I < ˙ C J