Metamath Proof Explorer


Theorem chnso

Description: A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Assertion chnso ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → < Or ran 𝐶 )

Proof

Step Hyp Ref Expression
1 eqidd ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → ( ♯ ‘ 𝐶 ) = ( ♯ ‘ 𝐶 ) )
2 ischn ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
3 2 biimpi ( 𝐶 ∈ ( < Chain 𝐴 ) → ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
4 3 adantl ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
5 4 simpld ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → 𝐶 ∈ Word 𝐴 )
6 1 5 wrdfd ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → 𝐶 : ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 )
7 6 frnd ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → ran 𝐶𝐴 )
8 simpl ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → < Po 𝐴 )
9 poss ( ran 𝐶𝐴 → ( < Po 𝐴< Po ran 𝐶 ) )
10 7 8 9 sylc ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → < Po ran 𝐶 )
11 fzossz ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ⊆ ℤ
12 simp-4r ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
13 11 12 sselid ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → 𝑖 ∈ ℤ )
14 13 zred ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → 𝑖 ∈ ℝ )
15 simplr ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
16 11 15 sselid ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → 𝑗 ∈ ℤ )
17 16 zred ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → 𝑗 ∈ ℝ )
18 14 17 lttri4d ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → ( 𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖 ) )
19 simp-8l ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → < Po 𝐴 )
20 simp-8r ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝐶 ∈ ( < Chain 𝐴 ) )
21 simpllr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
22 elfzouz ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝑖 ∈ ( ℤ ‘ 0 ) )
23 22 ad5antlr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ( ℤ ‘ 0 ) )
24 16 adantr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ℤ )
25 simpr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 )
26 elfzo2 ( 𝑖 ∈ ( 0 ..^ 𝑗 ) ↔ ( 𝑖 ∈ ( ℤ ‘ 0 ) ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗 ) )
27 23 24 25 26 syl3anbrc ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ( 0 ..^ 𝑗 ) )
28 19 20 21 27 chnlt ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → ( 𝐶𝑖 ) < ( 𝐶𝑗 ) )
29 simp-4r ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → ( 𝐶𝑖 ) = 𝑥 )
30 simplr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → ( 𝐶𝑗 ) = 𝑦 )
31 28 29 30 3brtr3d ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 < 𝑗 ) → 𝑥 < 𝑦 )
32 31 ex ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → ( 𝑖 < 𝑗𝑥 < 𝑦 ) )
33 simpr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 = 𝑗 ) → 𝑖 = 𝑗 )
34 33 fveq2d ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 = 𝑗 ) → ( 𝐶𝑖 ) = ( 𝐶𝑗 ) )
35 simp-4r ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 = 𝑗 ) → ( 𝐶𝑖 ) = 𝑥 )
36 simplr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 = 𝑗 ) → ( 𝐶𝑗 ) = 𝑦 )
37 34 35 36 3eqtr3d ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑖 = 𝑗 ) → 𝑥 = 𝑦 )
38 37 ex ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → ( 𝑖 = 𝑗𝑥 = 𝑦 ) )
39 simp-8l ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → < Po 𝐴 )
40 simp-8r ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝐶 ∈ ( < Chain 𝐴 ) )
41 12 adantr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
42 elfzouz ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝑗 ∈ ( ℤ ‘ 0 ) )
43 42 ad3antlr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ( ℤ ‘ 0 ) )
44 13 adantr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ ℤ )
45 simpr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝑗 < 𝑖 )
46 elfzo2 ( 𝑗 ∈ ( 0 ..^ 𝑖 ) ↔ ( 𝑗 ∈ ( ℤ ‘ 0 ) ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖 ) )
47 43 44 45 46 syl3anbrc ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ ( 0 ..^ 𝑖 ) )
48 39 40 41 47 chnlt ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → ( 𝐶𝑗 ) < ( 𝐶𝑖 ) )
49 simplr ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → ( 𝐶𝑗 ) = 𝑦 )
50 simp-4r ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → ( 𝐶𝑖 ) = 𝑥 )
51 48 49 50 3brtr3d ( ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) ∧ 𝑗 < 𝑖 ) → 𝑦 < 𝑥 )
52 51 ex ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → ( 𝑗 < 𝑖𝑦 < 𝑥 ) )
53 32 38 52 3orim123d ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → ( ( 𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖 ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) ) )
54 18 53 mpd ( ( ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑗 ) = 𝑦 ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
55 6 ffnd ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
56 55 ad4antr ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) → 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
57 simpllr ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) → 𝑦 ∈ ran 𝐶 )
58 fvelrnb ( 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → ( 𝑦 ∈ ran 𝐶 ↔ ∃ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶𝑗 ) = 𝑦 ) )
59 58 biimpa ( ( 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ∧ 𝑦 ∈ ran 𝐶 ) → ∃ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶𝑗 ) = 𝑦 )
60 56 57 59 syl2anc ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) → ∃ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶𝑗 ) = 𝑦 )
61 54 60 r19.29a ( ( ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) ∧ ( 𝐶𝑖 ) = 𝑥 ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
62 55 ad2antrr ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) → 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
63 simplr ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) → 𝑥 ∈ ran 𝐶 )
64 fvelrnb ( 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → ( 𝑥 ∈ ran 𝐶 ↔ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶𝑖 ) = 𝑥 ) )
65 64 biimpa ( ( 𝐶 Fn ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ∧ 𝑥 ∈ ran 𝐶 ) → ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶𝑖 ) = 𝑥 )
66 62 63 65 syl2anc ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) → ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶𝑖 ) = 𝑥 )
67 61 66 r19.29a ( ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ 𝑥 ∈ ran 𝐶 ) ∧ 𝑦 ∈ ran 𝐶 ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
68 67 anasss ( ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) ∧ ( 𝑥 ∈ ran 𝐶𝑦 ∈ ran 𝐶 ) ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
69 10 68 issod ( ( < Po 𝐴𝐶 ∈ ( < Chain 𝐴 ) ) → < Or ran 𝐶 )