| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpof1.1 |
|- ( ph -> .< Po A ) |
| 2 |
|
chnpof1.2 |
|- ( ph -> B e. ( .< Chain A ) ) |
| 3 |
|
chnf |
|- ( B e. ( .< Chain A ) -> B : ( 0 ..^ ( # ` B ) ) --> A ) |
| 4 |
2 3
|
syl |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> A ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> .< Po A ) |
| 6 |
5
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> .< Po A ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` B ) ) ) -> B e. ( .< Chain A ) ) |
| 8 |
7 3
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` B ) ) ) -> B : ( 0 ..^ ( # ` B ) ) --> A ) |
| 9 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` B ) ) ) -> i e. ( 0 ..^ ( # ` B ) ) ) |
| 10 |
|
ffvelcdm |
|- ( ( B : ( 0 ..^ ( # ` B ) ) --> A /\ i e. ( 0 ..^ ( # ` B ) ) ) -> ( B ` i ) e. A ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` B ) ) ) -> ( B ` i ) e. A ) |
| 12 |
11
|
adantrr |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( B ` i ) e. A ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> B : ( 0 ..^ ( # ` B ) ) --> A ) |
| 14 |
|
simpr |
|- ( ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) -> j e. ( 0 ..^ ( # ` B ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> j e. ( 0 ..^ ( # ` B ) ) ) |
| 16 |
|
ffvelcdm |
|- ( ( B : ( 0 ..^ ( # ` B ) ) --> A /\ j e. ( 0 ..^ ( # ` B ) ) ) -> ( B ` j ) e. A ) |
| 17 |
13 15 16
|
syl2anc |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( B ` j ) e. A ) |
| 18 |
12 17
|
jca |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( ( B ` i ) e. A /\ ( B ` j ) e. A ) ) |
| 19 |
18
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> ( ( B ` i ) e. A /\ ( B ` j ) e. A ) ) |
| 20 |
2
|
adantr |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> B e. ( .< Chain A ) ) |
| 21 |
20
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> B e. ( .< Chain A ) ) |
| 22 |
15
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> j e. ( 0 ..^ ( # ` B ) ) ) |
| 23 |
|
simplrl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> i e. ( 0 ..^ ( # ` B ) ) ) |
| 24 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ ( # ` B ) ) -> i e. NN0 ) |
| 25 |
23 24
|
syl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> i e. NN0 ) |
| 26 |
|
elfzoelz |
|- ( j e. ( 0 ..^ ( # ` B ) ) -> j e. ZZ ) |
| 27 |
22 26
|
syl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> j e. ZZ ) |
| 28 |
|
simpr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> i < j ) |
| 29 |
25 27 28
|
3jca |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> ( i e. NN0 /\ j e. ZZ /\ i < j ) ) |
| 30 |
|
elfzo0z |
|- ( i e. ( 0 ..^ j ) <-> ( i e. NN0 /\ j e. ZZ /\ i < j ) ) |
| 31 |
29 30
|
sylibr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> i e. ( 0 ..^ j ) ) |
| 32 |
6 21 22 31
|
chnlt |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> ( B ` i ) .< ( B ` j ) ) |
| 33 |
|
po2ne |
|- ( ( .< Po A /\ ( ( B ` i ) e. A /\ ( B ` j ) e. A ) /\ ( B ` i ) .< ( B ` j ) ) -> ( B ` i ) =/= ( B ` j ) ) |
| 34 |
6 19 32 33
|
syl3anc |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> ( B ` i ) =/= ( B ` j ) ) |
| 35 |
34
|
neneqd |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ i < j ) -> -. ( B ` i ) = ( B ` j ) ) |
| 36 |
35
|
ex |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( i < j -> -. ( B ` i ) = ( B ` j ) ) ) |
| 37 |
36
|
con2d |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( ( B ` i ) = ( B ` j ) -> -. i < j ) ) |
| 38 |
37
|
imp |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ ( B ` i ) = ( B ` j ) ) -> -. i < j ) |
| 39 |
5
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> .< Po A ) |
| 40 |
17 12
|
jca |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( ( B ` j ) e. A /\ ( B ` i ) e. A ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> ( ( B ` j ) e. A /\ ( B ` i ) e. A ) ) |
| 42 |
20
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> B e. ( .< Chain A ) ) |
| 43 |
|
simplrl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> i e. ( 0 ..^ ( # ` B ) ) ) |
| 44 |
|
simplrr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> j e. ( 0 ..^ ( # ` B ) ) ) |
| 45 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ ( # ` B ) ) -> j e. NN0 ) |
| 46 |
44 45
|
syl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> j e. NN0 ) |
| 47 |
|
elfzoelz |
|- ( i e. ( 0 ..^ ( # ` B ) ) -> i e. ZZ ) |
| 48 |
43 47
|
syl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> i e. ZZ ) |
| 49 |
|
simpr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> j < i ) |
| 50 |
46 48 49
|
3jca |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> ( j e. NN0 /\ i e. ZZ /\ j < i ) ) |
| 51 |
|
elfzo0z |
|- ( j e. ( 0 ..^ i ) <-> ( j e. NN0 /\ i e. ZZ /\ j < i ) ) |
| 52 |
50 51
|
sylibr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> j e. ( 0 ..^ i ) ) |
| 53 |
39 42 43 52
|
chnlt |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> ( B ` j ) .< ( B ` i ) ) |
| 54 |
|
po2ne |
|- ( ( .< Po A /\ ( ( B ` j ) e. A /\ ( B ` i ) e. A ) /\ ( B ` j ) .< ( B ` i ) ) -> ( B ` j ) =/= ( B ` i ) ) |
| 55 |
54
|
necomd |
|- ( ( .< Po A /\ ( ( B ` j ) e. A /\ ( B ` i ) e. A ) /\ ( B ` j ) .< ( B ` i ) ) -> ( B ` i ) =/= ( B ` j ) ) |
| 56 |
39 41 53 55
|
syl3anc |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> ( B ` i ) =/= ( B ` j ) ) |
| 57 |
56
|
neneqd |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ j < i ) -> -. ( B ` i ) = ( B ` j ) ) |
| 58 |
57
|
ex |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( j < i -> -. ( B ` i ) = ( B ` j ) ) ) |
| 59 |
58
|
con2d |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( ( B ` i ) = ( B ` j ) -> -. j < i ) ) |
| 60 |
59
|
imp |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ ( B ` i ) = ( B ` j ) ) -> -. j < i ) |
| 61 |
47
|
zred |
|- ( i e. ( 0 ..^ ( # ` B ) ) -> i e. RR ) |
| 62 |
26
|
zred |
|- ( j e. ( 0 ..^ ( # ` B ) ) -> j e. RR ) |
| 63 |
61 62
|
anim12i |
|- ( ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) -> ( i e. RR /\ j e. RR ) ) |
| 64 |
63
|
adantl |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( i e. RR /\ j e. RR ) ) |
| 65 |
64
|
adantr |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ ( B ` i ) = ( B ` j ) ) -> ( i e. RR /\ j e. RR ) ) |
| 66 |
|
lttri4 |
|- ( ( i e. RR /\ j e. RR ) -> ( i < j \/ i = j \/ j < i ) ) |
| 67 |
65 66
|
syl |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ ( B ` i ) = ( B ` j ) ) -> ( i < j \/ i = j \/ j < i ) ) |
| 68 |
|
3orcoma |
|- ( ( i < j \/ i = j \/ j < i ) <-> ( i = j \/ i < j \/ j < i ) ) |
| 69 |
67 68
|
sylib |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ ( B ` i ) = ( B ` j ) ) -> ( i = j \/ i < j \/ j < i ) ) |
| 70 |
38 60 69
|
ecase23d |
|- ( ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) /\ ( B ` i ) = ( B ` j ) ) -> i = j ) |
| 71 |
70
|
ex |
|- ( ( ph /\ ( i e. ( 0 ..^ ( # ` B ) ) /\ j e. ( 0 ..^ ( # ` B ) ) ) ) -> ( ( B ` i ) = ( B ` j ) -> i = j ) ) |
| 72 |
71
|
ralrimivva |
|- ( ph -> A. i e. ( 0 ..^ ( # ` B ) ) A. j e. ( 0 ..^ ( # ` B ) ) ( ( B ` i ) = ( B ` j ) -> i = j ) ) |
| 73 |
4 72
|
jca |
|- ( ph -> ( B : ( 0 ..^ ( # ` B ) ) --> A /\ A. i e. ( 0 ..^ ( # ` B ) ) A. j e. ( 0 ..^ ( # ` B ) ) ( ( B ` i ) = ( B ` j ) -> i = j ) ) ) |
| 74 |
|
dff13 |
|- ( B : ( 0 ..^ ( # ` B ) ) -1-1-> A <-> ( B : ( 0 ..^ ( # ` B ) ) --> A /\ A. i e. ( 0 ..^ ( # ` B ) ) A. j e. ( 0 ..^ ( # ` B ) ) ( ( B ` i ) = ( B ` j ) -> i = j ) ) ) |
| 75 |
73 74
|
sylibr |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) -1-1-> A ) |