Metamath Proof Explorer


Theorem chnf

Description: A chain is a zero-based finite sequence with a recoverable upper limit. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnf
|- ( B e. ( .< Chain A ) -> B : ( 0 ..^ ( # ` B ) ) --> A )

Proof

Step Hyp Ref Expression
1 id
 |-  ( B e. ( .< Chain A ) -> B e. ( .< Chain A ) )
2 1 chnwrd
 |-  ( B e. ( .< Chain A ) -> B e. Word A )
3 wrdf
 |-  ( B e. Word A -> B : ( 0 ..^ ( # ` B ) ) --> A )
4 2 3 syl
 |-  ( B e. ( .< Chain A ) -> B : ( 0 ..^ ( # ` B ) ) --> A )