Metamath Proof Explorer


Theorem chnf

Description: A chain is a zero-based finite sequence with a recoverable upper limit. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnf B Chain A < ˙ B : 0 ..^ B A

Proof

Step Hyp Ref Expression
1 id B Chain A < ˙ B Chain A < ˙
2 1 chnwrd B Chain A < ˙ B Word A
3 wrdf B Word A B : 0 ..^ B A
4 2 3 syl B Chain A < ˙ B : 0 ..^ B A