Metamath Proof Explorer


Theorem chnpoadomd

Description: A chain under relation which orders the alphabet cannot have more elements than the alphabet itself. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpoadomd.1
|- ( ph -> .< Po A )
chnpoadomd.2
|- ( ph -> B e. ( .< Chain A ) )
chnpoadomd.3
|- ( ph -> A e. V )
Assertion chnpoadomd
|- ( ph -> ( 0 ..^ ( # ` B ) ) ~<_ A )

Proof

Step Hyp Ref Expression
1 chnpoadomd.1
 |-  ( ph -> .< Po A )
2 chnpoadomd.2
 |-  ( ph -> B e. ( .< Chain A ) )
3 chnpoadomd.3
 |-  ( ph -> A e. V )
4 1 2 chnpof1
 |-  ( ph -> B : ( 0 ..^ ( # ` B ) ) -1-1-> A )
5 f1domg
 |-  ( A e. V -> ( B : ( 0 ..^ ( # ` B ) ) -1-1-> A -> ( 0 ..^ ( # ` B ) ) ~<_ A ) )
6 3 5 syl
 |-  ( ph -> ( B : ( 0 ..^ ( # ` B ) ) -1-1-> A -> ( 0 ..^ ( # ` B ) ) ~<_ A ) )
7 4 6 mpd
 |-  ( ph -> ( 0 ..^ ( # ` B ) ) ~<_ A )