Description: A chain under relation which orders the alphabet cannot have more elements than the alphabet itself. (Contributed by Ender Ting, 20-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chnpoadomd.1 | |- ( ph -> .< Po A ) |
|
| chnpoadomd.2 | |- ( ph -> B e. ( .< Chain A ) ) |
||
| chnpoadomd.3 | |- ( ph -> A e. V ) |
||
| Assertion | chnpoadomd | |- ( ph -> ( 0 ..^ ( # ` B ) ) ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnpoadomd.1 | |- ( ph -> .< Po A ) |
|
| 2 | chnpoadomd.2 | |- ( ph -> B e. ( .< Chain A ) ) |
|
| 3 | chnpoadomd.3 | |- ( ph -> A e. V ) |
|
| 4 | 1 2 | chnpof1 | |- ( ph -> B : ( 0 ..^ ( # ` B ) ) -1-1-> A ) |
| 5 | f1domg | |- ( A e. V -> ( B : ( 0 ..^ ( # ` B ) ) -1-1-> A -> ( 0 ..^ ( # ` B ) ) ~<_ A ) ) |
|
| 6 | 3 5 | syl | |- ( ph -> ( B : ( 0 ..^ ( # ` B ) ) -1-1-> A -> ( 0 ..^ ( # ` B ) ) ~<_ A ) ) |
| 7 | 4 6 | mpd | |- ( ph -> ( 0 ..^ ( # ` B ) ) ~<_ A ) |