Metamath Proof Explorer


Theorem chnpoadomd

Description: A chain under relation which orders the alphabet cannot have more elements than the alphabet itself. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpoadomd.1 φ < ˙ Po A
chnpoadomd.2 φ B Chain A < ˙
chnpoadomd.3 φ A V
Assertion chnpoadomd φ 0 ..^ B A

Proof

Step Hyp Ref Expression
1 chnpoadomd.1 φ < ˙ Po A
2 chnpoadomd.2 φ B Chain A < ˙
3 chnpoadomd.3 φ A V
4 1 2 chnpof1 φ B : 0 ..^ B 1-1 A
5 f1domg A V B : 0 ..^ B 1-1 A 0 ..^ B A
6 3 5 syl φ B : 0 ..^ B 1-1 A 0 ..^ B A
7 4 6 mpd φ 0 ..^ B A