Metamath Proof Explorer


Theorem chnpolleha

Description: A chain under relation which orders the alphabet has at most alphabet's size elements in it. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpoadomd.1 φ < ˙ Po A
chnpoadomd.2 φ B Chain A < ˙
chnpoadomd.3 φ A V
Assertion chnpolleha φ B A

Proof

Step Hyp Ref Expression
1 chnpoadomd.1 φ < ˙ Po A
2 chnpoadomd.2 φ B Chain A < ˙
3 chnpoadomd.3 φ A V
4 2 chnwrd φ B Word A
5 lencl B Word A B 0
6 4 5 syl φ B 0
7 hashfzo0 B 0 0 ..^ B = B
8 7 eqcomd B 0 B = 0 ..^ B
9 6 8 syl φ B = 0 ..^ B
10 1 2 chnpof1 φ B : 0 ..^ B 1-1 A
11 hashf1dmcdm B Chain A < ˙ A V B : 0 ..^ B 1-1 A 0 ..^ B A
12 2 3 10 11 syl3anc φ 0 ..^ B A
13 9 12 eqbrtrd φ B A