Metamath Proof Explorer


Theorem chnpolleha

Description: A chain under relation which orders the alphabet has at most alphabet's size elements in it. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpoadomd.1
|- ( ph -> .< Po A )
chnpoadomd.2
|- ( ph -> B e. ( .< Chain A ) )
chnpoadomd.3
|- ( ph -> A e. V )
Assertion chnpolleha
|- ( ph -> ( # ` B ) <_ ( # ` A ) )

Proof

Step Hyp Ref Expression
1 chnpoadomd.1
 |-  ( ph -> .< Po A )
2 chnpoadomd.2
 |-  ( ph -> B e. ( .< Chain A ) )
3 chnpoadomd.3
 |-  ( ph -> A e. V )
4 2 chnwrd
 |-  ( ph -> B e. Word A )
5 lencl
 |-  ( B e. Word A -> ( # ` B ) e. NN0 )
6 4 5 syl
 |-  ( ph -> ( # ` B ) e. NN0 )
7 hashfzo0
 |-  ( ( # ` B ) e. NN0 -> ( # ` ( 0 ..^ ( # ` B ) ) ) = ( # ` B ) )
8 7 eqcomd
 |-  ( ( # ` B ) e. NN0 -> ( # ` B ) = ( # ` ( 0 ..^ ( # ` B ) ) ) )
9 6 8 syl
 |-  ( ph -> ( # ` B ) = ( # ` ( 0 ..^ ( # ` B ) ) ) )
10 1 2 chnpof1
 |-  ( ph -> B : ( 0 ..^ ( # ` B ) ) -1-1-> A )
11 hashf1dmcdm
 |-  ( ( B e. ( .< Chain A ) /\ A e. V /\ B : ( 0 ..^ ( # ` B ) ) -1-1-> A ) -> ( # ` ( 0 ..^ ( # ` B ) ) ) <_ ( # ` A ) )
12 2 3 10 11 syl3anc
 |-  ( ph -> ( # ` ( 0 ..^ ( # ` B ) ) ) <_ ( # ` A ) )
13 9 12 eqbrtrd
 |-  ( ph -> ( # ` B ) <_ ( # ` A ) )