| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpoadomd.1 |
|- ( ph -> .< Po A ) |
| 2 |
|
chnpoadomd.2 |
|- ( ph -> B e. ( .< Chain A ) ) |
| 3 |
|
chnpoadomd.3 |
|- ( ph -> A e. V ) |
| 4 |
2
|
chnwrd |
|- ( ph -> B e. Word A ) |
| 5 |
|
lencl |
|- ( B e. Word A -> ( # ` B ) e. NN0 ) |
| 6 |
4 5
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 7 |
|
hashfzo0 |
|- ( ( # ` B ) e. NN0 -> ( # ` ( 0 ..^ ( # ` B ) ) ) = ( # ` B ) ) |
| 8 |
7
|
eqcomd |
|- ( ( # ` B ) e. NN0 -> ( # ` B ) = ( # ` ( 0 ..^ ( # ` B ) ) ) ) |
| 9 |
6 8
|
syl |
|- ( ph -> ( # ` B ) = ( # ` ( 0 ..^ ( # ` B ) ) ) ) |
| 10 |
1 2
|
chnpof1 |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) -1-1-> A ) |
| 11 |
|
hashf1dmcdm |
|- ( ( B e. ( .< Chain A ) /\ A e. V /\ B : ( 0 ..^ ( # ` B ) ) -1-1-> A ) -> ( # ` ( 0 ..^ ( # ` B ) ) ) <_ ( # ` A ) ) |
| 12 |
2 3 10 11
|
syl3anc |
|- ( ph -> ( # ` ( 0 ..^ ( # ` B ) ) ) <_ ( # ` A ) ) |
| 13 |
9 12
|
eqbrtrd |
|- ( ph -> ( # ` B ) <_ ( # ` A ) ) |