| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpolfz.1 |
|- ( ph -> .< Po A ) |
| 2 |
|
chnpolfz.2 |
|- ( ph -> B e. ( .< Chain A ) ) |
| 3 |
|
chnpolfz.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 5 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
| 7 |
6
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
| 8 |
2
|
chnwrd |
|- ( ph -> B e. Word A ) |
| 9 |
|
lencl |
|- ( B e. Word A -> ( # ` B ) e. NN0 ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 11 |
10
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
| 12 |
|
hashge0 |
|- ( B e. ( .< Chain A ) -> 0 <_ ( # ` B ) ) |
| 13 |
2 12
|
syl |
|- ( ph -> 0 <_ ( # ` B ) ) |
| 14 |
1 2 3
|
chnpolleha |
|- ( ph -> ( # ` B ) <_ ( # ` A ) ) |
| 15 |
4 7 11 13 14
|
elfzd |
|- ( ph -> ( # ` B ) e. ( 0 ... ( # ` A ) ) ) |