Metamath Proof Explorer


Theorem chnpolfz

Description: Provided that chain's relation is a partial order, the chain length is restricted to a specific integer range. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpolfz.1
|- ( ph -> .< Po A )
chnpolfz.2
|- ( ph -> B e. ( .< Chain A ) )
chnpolfz.3
|- ( ph -> A e. Fin )
Assertion chnpolfz
|- ( ph -> ( # ` B ) e. ( 0 ... ( # ` A ) ) )

Proof

Step Hyp Ref Expression
1 chnpolfz.1
 |-  ( ph -> .< Po A )
2 chnpolfz.2
 |-  ( ph -> B e. ( .< Chain A ) )
3 chnpolfz.3
 |-  ( ph -> A e. Fin )
4 0zd
 |-  ( ph -> 0 e. ZZ )
5 hashcl
 |-  ( A e. Fin -> ( # ` A ) e. NN0 )
6 3 5 syl
 |-  ( ph -> ( # ` A ) e. NN0 )
7 6 nn0zd
 |-  ( ph -> ( # ` A ) e. ZZ )
8 2 chnwrd
 |-  ( ph -> B e. Word A )
9 lencl
 |-  ( B e. Word A -> ( # ` B ) e. NN0 )
10 8 9 syl
 |-  ( ph -> ( # ` B ) e. NN0 )
11 10 nn0zd
 |-  ( ph -> ( # ` B ) e. ZZ )
12 hashge0
 |-  ( B e. ( .< Chain A ) -> 0 <_ ( # ` B ) )
13 2 12 syl
 |-  ( ph -> 0 <_ ( # ` B ) )
14 1 2 3 chnpolleha
 |-  ( ph -> ( # ` B ) <_ ( # ` A ) )
15 4 7 11 13 14 elfzd
 |-  ( ph -> ( # ` B ) e. ( 0 ... ( # ` A ) ) )