| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpolfz.1 |
⊢ ( 𝜑 → < Po 𝐴 ) |
| 2 |
|
chnpolfz.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 3 |
|
chnpolfz.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 5 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 |
6
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 8 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐵 ∈ Word 𝐴 ) |
| 9 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝐴 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 11 |
10
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 12 |
|
hashge0 |
⊢ ( 𝐵 ∈ ( < Chain 𝐴 ) → 0 ≤ ( ♯ ‘ 𝐵 ) ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ 𝐵 ) ) |
| 14 |
1 2 3
|
chnpolleha |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 15 |
4 7 11 13 14
|
elfzd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |