Metamath Proof Explorer


Theorem chnpolfz

Description: Provided that chain's relation is a partial order, the chain length is restricted to a specific integer range. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpolfz.1 ( 𝜑< Po 𝐴 )
chnpolfz.2 ( 𝜑𝐵 ∈ ( < Chain 𝐴 ) )
chnpolfz.3 ( 𝜑𝐴 ∈ Fin )
Assertion chnpolfz ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 chnpolfz.1 ( 𝜑< Po 𝐴 )
2 chnpolfz.2 ( 𝜑𝐵 ∈ ( < Chain 𝐴 ) )
3 chnpolfz.3 ( 𝜑𝐴 ∈ Fin )
4 0zd ( 𝜑 → 0 ∈ ℤ )
5 hashcl ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
6 3 5 syl ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
7 6 nn0zd ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ )
8 2 chnwrd ( 𝜑𝐵 ∈ Word 𝐴 )
9 lencl ( 𝐵 ∈ Word 𝐴 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
10 8 9 syl ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
11 10 nn0zd ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ )
12 hashge0 ( 𝐵 ∈ ( < Chain 𝐴 ) → 0 ≤ ( ♯ ‘ 𝐵 ) )
13 2 12 syl ( 𝜑 → 0 ≤ ( ♯ ‘ 𝐵 ) )
14 1 2 3 chnpolleha ( 𝜑 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) )
15 4 7 11 13 14 elfzd ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) )