| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunrab |
⊢ ∪ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } = { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑥 ) = 𝑛 } |
| 2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) ∧ 𝑥 ∈ ( < Chain 𝐴 ) ) → < Po 𝐴 ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) ∧ 𝑥 ∈ ( < Chain 𝐴 ) ) → 𝑥 ∈ ( < Chain 𝐴 ) ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) ∧ 𝑥 ∈ ( < Chain 𝐴 ) ) → 𝐴 ∈ Fin ) |
| 5 |
2 3 4
|
chnpolfz |
⊢ ( ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) ∧ 𝑥 ∈ ( < Chain 𝐴 ) ) → ( ♯ ‘ 𝑥 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
| 6 |
|
risset |
⊢ ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) 𝑛 = ( ♯ ‘ 𝑥 ) ) |
| 7 |
|
eqcom |
⊢ ( 𝑛 = ( ♯ ‘ 𝑥 ) ↔ ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| 8 |
7
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) 𝑛 = ( ♯ ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| 9 |
6 8
|
bitri |
⊢ ( ( ♯ ‘ 𝑥 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| 10 |
5 9
|
sylib |
⊢ ( ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) ∧ 𝑥 ∈ ( < Chain 𝐴 ) ) → ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑥 ) = 𝑛 ) |
| 11 |
10
|
rabeqcda |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑥 ) = 𝑛 } = ( < Chain 𝐴 ) ) |
| 12 |
1 11
|
eqtr2id |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → ( < Chain 𝐴 ) = ∪ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ) |
| 13 |
|
fzfid |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → ( 0 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin ) |
| 14 |
|
chnflenfi |
⊢ ( 𝐴 ∈ Fin → { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ∈ Fin ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ∈ Fin ) |
| 16 |
15
|
ralrimivw |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ∈ Fin ) |
| 17 |
|
iunfi |
⊢ ( ( ( 0 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin ∧ ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ∈ Fin ) → ∪ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ∈ Fin ) |
| 18 |
13 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → ∪ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) { 𝑥 ∈ ( < Chain 𝐴 ) ∣ ( ♯ ‘ 𝑥 ) = 𝑛 } ∈ Fin ) |
| 19 |
12 18
|
eqeltrd |
⊢ ( ( 𝐴 ∈ Fin ∧ < Po 𝐴 ) → ( < Chain 𝐴 ) ∈ Fin ) |