| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpoadomd.1 |
⊢ ( 𝜑 → < Po 𝐴 ) |
| 2 |
|
chnpoadomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( < Chain 𝐴 ) ) |
| 3 |
|
chnpoadomd.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐵 ∈ Word 𝐴 ) |
| 5 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝐴 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 7 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ) |
| 10 |
1 2
|
chnpof1 |
⊢ ( 𝜑 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 ) |
| 11 |
|
hashf1dmcdm |
⊢ ( ( 𝐵 ∈ ( < Chain 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 ) → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 12 |
2 3 10 11
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 13 |
9 12
|
eqbrtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |