Database
BASIC ORDER THEORY
Posets, directed sets, and lattices as relations
Chains
chnpolfz
Metamath Proof Explorer
Description: Provided that chain's relation is a partial order, the chain length is
restricted to a specific integer range. (Contributed by Ender Ting , 20-Jan-2026)
Ref
Expression
Hypotheses
chnpolfz.1
⊢ φ → < ˙ Po A
chnpolfz.2
⊢ φ → B ∈ Chain A < ˙
chnpolfz.3
⊢ φ → A ∈ Fin
Assertion
chnpolfz
⊢ φ → B ∈ 0 … A
Proof
Step
Hyp
Ref
Expression
1
chnpolfz.1
⊢ φ → < ˙ Po A
2
chnpolfz.2
⊢ φ → B ∈ Chain A < ˙
3
chnpolfz.3
⊢ φ → A ∈ Fin
4
0zd
⊢ φ → 0 ∈ ℤ
5
hashcl
⊢ A ∈ Fin → A ∈ ℕ 0
6
3 5
syl
⊢ φ → A ∈ ℕ 0
7
6
nn0zd
⊢ φ → A ∈ ℤ
8
2
chnwrd
⊢ φ → B ∈ Word A
9
lencl
⊢ B ∈ Word A → B ∈ ℕ 0
10
8 9
syl
⊢ φ → B ∈ ℕ 0
11
10
nn0zd
⊢ φ → B ∈ ℤ
12
hashge0
⊢ B ∈ Chain A < ˙ → 0 ≤ B
13
2 12
syl
⊢ φ → 0 ≤ B
14
1 2 3
chnpolleha
⊢ φ → B ≤ A
15
4 7 11 13 14
elfzd
⊢ φ → B ∈ 0 … A