Metamath Proof Explorer


Theorem chnpolfz

Description: Provided that chain's relation is a partial order, the chain length is restricted to a specific integer range. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpolfz.1 φ < ˙ Po A
chnpolfz.2 φ B Chain A < ˙
chnpolfz.3 φ A Fin
Assertion chnpolfz φ B 0 A

Proof

Step Hyp Ref Expression
1 chnpolfz.1 φ < ˙ Po A
2 chnpolfz.2 φ B Chain A < ˙
3 chnpolfz.3 φ A Fin
4 0zd φ 0
5 hashcl A Fin A 0
6 3 5 syl φ A 0
7 6 nn0zd φ A
8 2 chnwrd φ B Word A
9 lencl B Word A B 0
10 8 9 syl φ B 0
11 10 nn0zd φ B
12 hashge0 B Chain A < ˙ 0 B
13 2 12 syl φ 0 B
14 1 2 3 chnpolleha φ B A
15 4 7 11 13 14 elfzd φ B 0 A