Metamath Proof Explorer


Theorem chnpoadomd

Description: A chain under relation which orders the alphabet cannot have more elements than the alphabet itself. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses chnpoadomd.1 ( 𝜑< Po 𝐴 )
chnpoadomd.2 ( 𝜑𝐵 ∈ ( < Chain 𝐴 ) )
chnpoadomd.3 ( 𝜑𝐴𝑉 )
Assertion chnpoadomd ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 )

Proof

Step Hyp Ref Expression
1 chnpoadomd.1 ( 𝜑< Po 𝐴 )
2 chnpoadomd.2 ( 𝜑𝐵 ∈ ( < Chain 𝐴 ) )
3 chnpoadomd.3 ( 𝜑𝐴𝑉 )
4 1 2 chnpof1 ( 𝜑𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1𝐴 )
5 f1domg ( 𝐴𝑉 → ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1𝐴 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 ) )
6 3 5 syl ( 𝜑 → ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1𝐴 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 ) )
7 4 6 mpd ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 )