Description: A chain under relation which orders the alphabet cannot have more elements than the alphabet itself. (Contributed by Ender Ting, 20-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chnpoadomd.1 | ⊢ ( 𝜑 → < Po 𝐴 ) | |
| chnpoadomd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( < Chain 𝐴 ) ) | ||
| chnpoadomd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | chnpoadomd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnpoadomd.1 | ⊢ ( 𝜑 → < Po 𝐴 ) | |
| 2 | chnpoadomd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( < Chain 𝐴 ) ) | |
| 3 | chnpoadomd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | 1 2 | chnpof1 | ⊢ ( 𝜑 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 ) |
| 5 | f1domg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 ) ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐴 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 ) ) |
| 7 | 4 6 | mpd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ≼ 𝐴 ) |