Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( A = B -> ( A R B <-> B R B ) ) |
2 |
|
poirr |
|- ( ( R Po V /\ B e. V ) -> -. B R B ) |
3 |
2
|
adantrl |
|- ( ( R Po V /\ ( A e. V /\ B e. V ) ) -> -. B R B ) |
4 |
3
|
pm2.21d |
|- ( ( R Po V /\ ( A e. V /\ B e. V ) ) -> ( B R B -> A =/= B ) ) |
5 |
4
|
ex |
|- ( R Po V -> ( ( A e. V /\ B e. V ) -> ( B R B -> A =/= B ) ) ) |
6 |
5
|
com13 |
|- ( B R B -> ( ( A e. V /\ B e. V ) -> ( R Po V -> A =/= B ) ) ) |
7 |
1 6
|
syl6bi |
|- ( A = B -> ( A R B -> ( ( A e. V /\ B e. V ) -> ( R Po V -> A =/= B ) ) ) ) |
8 |
7
|
com24 |
|- ( A = B -> ( R Po V -> ( ( A e. V /\ B e. V ) -> ( A R B -> A =/= B ) ) ) ) |
9 |
8
|
3impd |
|- ( A = B -> ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) ) |
10 |
|
ax-1 |
|- ( A =/= B -> ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) ) |
11 |
9 10
|
pm2.61ine |
|- ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) |