Metamath Proof Explorer


Theorem clmmcl

Description: Closure of ring multiplication for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmmcl W CMod X K Y K X Y K

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsubrg W CMod K SubRing fld
4 cnfldmul × = fld
5 4 subrgmcl K SubRing fld X K Y K X Y K
6 3 5 syl3an1 W CMod X K Y K X Y K