Metamath Proof Explorer


Theorem clwwlknonclwlknonen

Description: The sets of the two representations of closed walks of a fixed positive length on a fixed vertex are equinumerous. (Contributed by AV, 27-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Assertion clwwlknonclwlknonen GUSHGraphXVtxGNwClWalksG|1stw=N2ndw0=XXClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 fvex ClWalksGV
2 1 rabex wClWalksG|1stw=N2ndw0=XV
3 ovex XClWWalksNOnGNV
4 eqid VtxG=VtxG
5 eqid wClWalksG|1stw=N2ndw0=X=wClWalksG|1stw=N2ndw0=X
6 eqid cwClWalksG|1stw=N2ndw0=X2ndcprefix1stc=cwClWalksG|1stw=N2ndw0=X2ndcprefix1stc
7 4 5 6 clwwlknonclwlknonf1o GUSHGraphXVtxGNcwClWalksG|1stw=N2ndw0=X2ndcprefix1stc:wClWalksG|1stw=N2ndw0=X1-1 ontoXClWWalksNOnGN
8 f1oen2g wClWalksG|1stw=N2ndw0=XVXClWWalksNOnGNVcwClWalksG|1stw=N2ndw0=X2ndcprefix1stc:wClWalksG|1stw=N2ndw0=X1-1 ontoXClWWalksNOnGNwClWalksG|1stw=N2ndw0=XXClWWalksNOnGN
9 2 3 7 8 mp3an12i GUSHGraphXVtxGNwClWalksG|1stw=N2ndw0=XXClWWalksNOnGN