Metamath Proof Explorer


Theorem cm2mi

Description: A lattice element that commutes with two others also commutes with their meet. Theorem 4.2 of Beran p. 49. (Contributed by NM, 11-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1 AC
fh1.2 BC
fh1.3 CC
fh1.4 A𝐶B
fh1.5 A𝐶C
Assertion cm2mi A𝐶BC

Proof

Step Hyp Ref Expression
1 fh1.1 AC
2 fh1.2 BC
3 fh1.3 CC
4 fh1.4 A𝐶B
5 fh1.5 A𝐶C
6 2 choccli BC
7 3 choccli CC
8 1 2 4 cmcm2ii A𝐶B
9 1 3 5 cmcm2ii A𝐶C
10 1 6 7 8 9 cm2ji A𝐶BC
11 2 3 chdmm1i BC=BC
12 10 11 breqtrri A𝐶BC
13 2 3 chincli BCC
14 1 13 cmcm2i A𝐶BCA𝐶BC
15 12 14 mpbir A𝐶BC