Metamath Proof Explorer


Theorem cmcm

Description: Commutation is symmetric. Theorem 2(v) of Kalmbach p. 22. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmcm ACBCA𝐶BB𝐶A

Proof

Step Hyp Ref Expression
1 breq1 A=ifACA0A𝐶BifACA0𝐶B
2 breq2 A=ifACA0B𝐶AB𝐶ifACA0
3 1 2 bibi12d A=ifACA0A𝐶BB𝐶AifACA0𝐶BB𝐶ifACA0
4 breq2 B=ifBCB0ifACA0𝐶BifACA0𝐶ifBCB0
5 breq1 B=ifBCB0B𝐶ifACA0ifBCB0𝐶ifACA0
6 4 5 bibi12d B=ifBCB0ifACA0𝐶BB𝐶ifACA0ifACA0𝐶ifBCB0ifBCB0𝐶ifACA0
7 h0elch 0C
8 7 elimel ifACA0C
9 7 elimel ifBCB0C
10 8 9 cmcmi ifACA0𝐶ifBCB0ifBCB0𝐶ifACA0
11 3 6 10 dedth2h ACBCA𝐶BB𝐶A