Metamath Proof Explorer
Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
cmn4d.1 |
|
|
|
cmn4d.2 |
|
|
|
cmn4d.3 |
|
|
|
cmn4d.4 |
|
|
|
cmn4d.5 |
|
|
|
cmn4d.6 |
|
|
|
cmn4d.7 |
|
|
Assertion |
cmn4d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmn4d.1 |
|
| 2 |
|
cmn4d.2 |
|
| 3 |
|
cmn4d.3 |
|
| 4 |
|
cmn4d.4 |
|
| 5 |
|
cmn4d.5 |
|
| 6 |
|
cmn4d.6 |
|
| 7 |
|
cmn4d.7 |
|
| 8 |
1 2
|
cmn4 |
|
| 9 |
3 4 5 6 7 8
|
syl122anc |
|