Metamath Proof Explorer
Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
cmn4d.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
cmn4d.2 |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
cmn4d.3 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
|
|
cmn4d.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
cmn4d.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
cmn4d.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
|
cmn4d.7 |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
|
Assertion |
cmn4d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmn4d.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cmn4d.2 |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
cmn4d.3 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
cmn4d.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
cmn4d.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
cmn4d.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 7 |
|
cmn4d.7 |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
| 8 |
1 2
|
cmn4 |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |
| 9 |
3 4 5 6 7 8
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |