| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmn135246.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cmn135246.2 |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
cmn135246.3 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
cmn135246.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
cmn135246.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
cmn135246.6 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 7 |
|
cmn135246.7 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
| 8 |
|
cmn135246.8 |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
| 9 |
|
cmn135246.9 |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
| 10 |
1 2
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 11 |
3 4 5 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 12 |
1 2 3 6 7 8 9
|
cmn4d |
⊢ ( 𝜑 → ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) = ( ( 𝑍 + 𝑉 ) + ( 𝑈 + 𝑊 ) ) ) |
| 13 |
3
|
cmnmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 14 |
1 2
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑍 + 𝑉 ) ∈ 𝐵 ) |
| 15 |
13 6 8 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 + 𝑉 ) ∈ 𝐵 ) |
| 16 |
1 2
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑈 + 𝑊 ) ∈ 𝐵 ) |
| 17 |
13 7 9 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 + 𝑊 ) ∈ 𝐵 ) |
| 18 |
1 2
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑍 + 𝑉 ) ∈ 𝐵 ∧ ( 𝑈 + 𝑊 ) ∈ 𝐵 ) → ( ( 𝑍 + 𝑉 ) + ( 𝑈 + 𝑊 ) ) = ( ( 𝑈 + 𝑊 ) + ( 𝑍 + 𝑉 ) ) ) |
| 19 |
3 15 17 18
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑍 + 𝑉 ) + ( 𝑈 + 𝑊 ) ) = ( ( 𝑈 + 𝑊 ) + ( 𝑍 + 𝑉 ) ) ) |
| 20 |
12 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) = ( ( 𝑈 + 𝑊 ) + ( 𝑍 + 𝑉 ) ) ) |
| 21 |
11 20
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) ) = ( ( 𝑌 + 𝑋 ) + ( ( 𝑈 + 𝑊 ) + ( 𝑍 + 𝑉 ) ) ) ) |
| 22 |
1 2 3 5 4 17 15
|
cmn4d |
⊢ ( 𝜑 → ( ( 𝑌 + 𝑋 ) + ( ( 𝑈 + 𝑊 ) + ( 𝑍 + 𝑉 ) ) ) = ( ( 𝑌 + ( 𝑈 + 𝑊 ) ) + ( 𝑋 + ( 𝑍 + 𝑉 ) ) ) ) |
| 23 |
21 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( ( 𝑍 + 𝑈 ) + ( 𝑉 + 𝑊 ) ) ) = ( ( 𝑌 + ( 𝑈 + 𝑊 ) ) + ( 𝑋 + ( 𝑍 + 𝑉 ) ) ) ) |