Metamath Proof Explorer


Theorem cmnmnd

Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Assertion cmnmnd GCMndGMnd

Proof

Step Hyp Ref Expression
1 eqid BaseG=BaseG
2 eqid +G=+G
3 1 2 iscmn GCMndGMndxBaseGyBaseGx+Gy=y+Gx
4 3 simplbi GCMndGMnd