Metamath Proof Explorer


Theorem cmscmet

Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 X=BaseM
iscms.2 D=distMX×X
Assertion cmscmet MCMetSpDCMetX

Proof

Step Hyp Ref Expression
1 iscms.1 X=BaseM
2 iscms.2 D=distMX×X
3 1 2 iscms MCMetSpMMetSpDCMetX
4 3 simprbi MCMetSpDCMetX