Metamath Proof Explorer


Theorem cnaddinv

Description: Value of the group inverse of complex number addition. See also cnfldneg . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis cnaddabl.g G=Basendx+ndx+
Assertion cnaddinv AinvgGA=A

Proof

Step Hyp Ref Expression
1 cnaddabl.g G=Basendx+ndx+
2 negid AA+A=0
3 1 cnaddabl GAbel
4 ablgrp GAbelGGrp
5 3 4 ax-mp GGrp
6 id AA
7 negcl AA
8 cnex V
9 1 grpbase V=BaseG
10 8 9 ax-mp =BaseG
11 addex +V
12 1 grpplusg +V+=+G
13 11 12 ax-mp +=+G
14 1 cnaddid 0G=0
15 14 eqcomi 0=0G
16 eqid invgG=invgG
17 10 13 15 16 grpinvid1 GGrpAAinvgGA=AA+A=0
18 5 6 7 17 mp3an2i AinvgGA=AA+A=0
19 2 18 mpbird AinvgGA=A