| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnaddabl.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
| 2 |
|
negid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) |
| 3 |
1
|
cnaddabl |
⊢ 𝐺 ∈ Abel |
| 4 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 5 |
3 4
|
ax-mp |
⊢ 𝐺 ∈ Grp |
| 6 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 7 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 8 |
|
cnex |
⊢ ℂ ∈ V |
| 9 |
1
|
grpbase |
⊢ ( ℂ ∈ V → ℂ = ( Base ‘ 𝐺 ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ℂ = ( Base ‘ 𝐺 ) |
| 11 |
|
addex |
⊢ + ∈ V |
| 12 |
1
|
grpplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
| 13 |
11 12
|
ax-mp |
⊢ + = ( +g ‘ 𝐺 ) |
| 14 |
1
|
cnaddid |
⊢ ( 0g ‘ 𝐺 ) = 0 |
| 15 |
14
|
eqcomi |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 16 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 17 |
10 13 15 16
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 18 |
5 6 7 17
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 19 |
2 18
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ) |