| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cnaddabl.g | 
							⊢ 𝐺  =  { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 }  | 
						
						
							| 2 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 3 | 
							
								1
							 | 
							grpbase | 
							⊢ ( ℂ  ∈  V  →  ℂ  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							⊢ ℂ  =  ( Base ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							addex | 
							⊢  +   ∈  V  | 
						
						
							| 6 | 
							
								1
							 | 
							grpplusg | 
							⊢ (  +   ∈  V  →   +   =  ( +g ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							ax-mp | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							addcl | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ )  | 
						
						
							| 9 | 
							
								
							 | 
							addass | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 11 | 
							
								
							 | 
							addlid | 
							⊢ ( 𝑥  ∈  ℂ  →  ( 0  +  𝑥 )  =  𝑥 )  | 
						
						
							| 12 | 
							
								
							 | 
							negcl | 
							⊢ ( 𝑥  ∈  ℂ  →  - 𝑥  ∈  ℂ )  | 
						
						
							| 13 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  - 𝑥  ∈  ℂ )  →  ( 𝑥  +  - 𝑥 )  =  ( - 𝑥  +  𝑥 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mpdan | 
							⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  +  - 𝑥 )  =  ( - 𝑥  +  𝑥 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							negid | 
							⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  +  - 𝑥 )  =  0 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtr3d | 
							⊢ ( 𝑥  ∈  ℂ  →  ( - 𝑥  +  𝑥 )  =  0 )  | 
						
						
							| 17 | 
							
								4 7 8 9 10 11 12 16
							 | 
							isgrpi | 
							⊢ 𝐺  ∈  Grp  | 
						
						
							| 18 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) )  | 
						
						
							| 19 | 
							
								17 4 7 18
							 | 
							isabli | 
							⊢ 𝐺  ∈  Abel  |