Metamath Proof Explorer


Theorem cnaddablx

Description: The complex numbers are an Abelian group under addition. This version of cnaddabl shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012)

Ref Expression
Hypothesis cnaddablx.g 𝐺 = { ⟨ 1 , ℂ ⟩ , ⟨ 2 , + ⟩ }
Assertion cnaddablx 𝐺 ∈ Abel

Proof

Step Hyp Ref Expression
1 cnaddablx.g 𝐺 = { ⟨ 1 , ℂ ⟩ , ⟨ 2 , + ⟩ }
2 cnex ℂ ∈ V
3 addex + ∈ V
4 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
5 addass ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
6 0cn 0 ∈ ℂ
7 addid2 ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 )
8 negcl ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ )
9 addcom ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) )
10 8 9 mpdan ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) )
11 negid ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 )
12 10 11 eqtr3d ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 )
13 2 3 1 4 5 6 7 8 12 isgrpix 𝐺 ∈ Grp
14 2 3 1 grpbasex ℂ = ( Base ‘ 𝐺 )
15 2 3 1 grpplusgx + = ( +g𝐺 )
16 addcom ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
17 13 14 15 16 isabli 𝐺 ∈ Abel