Metamath Proof Explorer


Theorem zaddablx

Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypothesis zaddablx.g 𝐺 = { ⟨ 1 , ℤ ⟩ , ⟨ 2 , + ⟩ }
Assertion zaddablx 𝐺 ∈ Abel

Proof

Step Hyp Ref Expression
1 zaddablx.g 𝐺 = { ⟨ 1 , ℤ ⟩ , ⟨ 2 , + ⟩ }
2 zex ℤ ∈ V
3 addex + ∈ V
4 zaddcl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ )
5 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
6 zcn ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ )
7 zcn ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ )
8 addass ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
9 5 6 7 8 syl3an ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
10 0z 0 ∈ ℤ
11 5 addid2d ( 𝑥 ∈ ℤ → ( 0 + 𝑥 ) = 𝑥 )
12 znegcl ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ )
13 zcn ( - 𝑥 ∈ ℤ → - 𝑥 ∈ ℂ )
14 addcom ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) )
15 5 13 14 syl2an ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℤ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) )
16 12 15 mpdan ( 𝑥 ∈ ℤ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) )
17 5 negidd ( 𝑥 ∈ ℤ → ( 𝑥 + - 𝑥 ) = 0 )
18 16 17 eqtr3d ( 𝑥 ∈ ℤ → ( - 𝑥 + 𝑥 ) = 0 )
19 2 3 1 4 9 10 11 12 18 isgrpix 𝐺 ∈ Grp
20 2 3 1 grpbasex ℤ = ( Base ‘ 𝐺 )
21 2 3 1 grpplusgx + = ( +g𝐺 )
22 addcom ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
23 5 6 22 syl2an ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
24 19 20 21 23 isabli 𝐺 ∈ Abel