Metamath Proof Explorer


Theorem cnfldplusf

Description: The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion cnfldplusf +=+𝑓fld

Proof

Step Hyp Ref Expression
1 ax-addf +:×
2 ffn +:×+Fn×
3 cnfldbas =Basefld
4 cnfldadd +=+fld
5 eqid +𝑓fld=+𝑓fld
6 3 4 5 plusfeq +Fn×+𝑓fld=+
7 1 2 6 mp2b +𝑓fld=+
8 7 eqcomi +=+𝑓fld