Metamath Proof Explorer


Theorem cnlnadjlem4

Description: Lemma for cnlnadji . The values of auxiliary function F are vectors. (Contributed by NM, 17-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 TLinOp
cnlnadjlem.2 TContOp
cnlnadjlem.3 G=gTgihy
cnlnadjlem.4 B=ιw|vTvihy=vihw
cnlnadjlem.5 F=yB
Assertion cnlnadjlem4 AFA

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 TLinOp
2 cnlnadjlem.2 TContOp
3 cnlnadjlem.3 G=gTgihy
4 cnlnadjlem.4 B=ιw|vTvihy=vihw
5 cnlnadjlem.5 F=yB
6 1 2 3 4 cnlnadjlem3 yB
7 5 6 fmpti F:
8 7 ffvelcdmi AFA