Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Operators on Hilbert spaces Adjoints (cont.) cnlnadjlem4  
				
		 
		
			
		 
		Description:   Lemma for cnlnadji  .  The values of auxiliary function F  are
         vectors.  (Contributed by NM , 17-Feb-2006)   (Proof shortened by Mario
         Carneiro , 10-Sep-2015)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cnlnadjlem.1   ⊢   T  ∈  LinOp       
					 
					
						cnlnadjlem.2   ⊢   T  ∈  ContOp       
					 
					
						cnlnadjlem.3   ⊢   G  =    g  ∈   ℋ  ⟼   T  ⁡  g   ⋅  ih y         
					 
					
						cnlnadjlem.4   ⊢   B  =   ι  w  ∈   ℋ  |   ∀  v  ∈   ℋ    T  ⁡  v   ⋅  ih y =  v  ⋅  ih w            
					 
					
						cnlnadjlem.5   ⊢   F  =    y  ∈   ℋ  ⟼  B          
					 
				
					Assertion 
					cnlnadjlem4    ⊢   A  ∈   ℋ    →    F  ⁡  A   ∈   ℋ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cnlnadjlem.1  ⊢   T  ∈  LinOp       
						
							2 
								
							 
							cnlnadjlem.2  ⊢   T  ∈  ContOp       
						
							3 
								
							 
							cnlnadjlem.3  ⊢   G  =    g  ∈   ℋ  ⟼   T  ⁡  g   ⋅  ih y         
						
							4 
								
							 
							cnlnadjlem.4  ⊢   B  =   ι  w  ∈   ℋ  |   ∀  v  ∈   ℋ    T  ⁡  v   ⋅  ih y =  v  ⋅  ih w            
						
							5 
								
							 
							cnlnadjlem.5  ⊢   F  =    y  ∈   ℋ  ⟼  B          
						
							6 
								1  2  3  4 
							 
							cnlnadjlem3   ⊢   y  ∈   ℋ    →   B  ∈   ℋ         
						
							7 
								5  6 
							 
							fmpti  ⊢   F  :   ℋ  ⟶   ℋ       
						
							8 
								7 
							 
							ffvelcdmi   ⊢   A  ∈   ℋ    →    F  ⁡  A   ∈   ℋ