Metamath Proof Explorer


Definition df-cnop

Description: Define the set of continuous operators on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-cnop ContOp=t|xy+z+wnormw-x<znormtw-tx<y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccop classContOp
1 vt setvart
2 chba class
3 cmap class𝑚
4 2 2 3 co class
5 vx setvarx
6 vy setvary
7 crp class+
8 vz setvarz
9 vw setvarw
10 cno classnorm
11 9 cv setvarw
12 cmv class-
13 5 cv setvarx
14 11 13 12 co classw-x
15 14 10 cfv classnormw-x
16 clt class<
17 8 cv setvarz
18 15 17 16 wbr wffnormw-x<z
19 1 cv setvart
20 11 19 cfv classtw
21 13 19 cfv classtx
22 20 21 12 co classtw-tx
23 22 10 cfv classnormtw-tx
24 6 cv setvary
25 23 24 16 wbr wffnormtw-tx<y
26 18 25 wi wffnormw-x<znormtw-tx<y
27 26 9 2 wral wffwnormw-x<znormtw-tx<y
28 27 8 7 wrex wffz+wnormw-x<znormtw-tx<y
29 28 6 7 wral wffy+z+wnormw-x<znormtw-tx<y
30 29 5 2 wral wffxy+z+wnormw-x<znormtw-tx<y
31 30 1 4 crab classt|xy+z+wnormw-x<znormtw-tx<y
32 0 31 wceq wffContOp=t|xy+z+wnormw-x<znormtw-tx<y