Description: Define the set of continuous operators on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccop | |
|
1 | vt | |
|
2 | chba | |
|
3 | cmap | |
|
4 | 2 2 3 | co | |
5 | vx | |
|
6 | vy | |
|
7 | crp | |
|
8 | vz | |
|
9 | vw | |
|
10 | cno | |
|
11 | 9 | cv | |
12 | cmv | |
|
13 | 5 | cv | |
14 | 11 13 12 | co | |
15 | 14 10 | cfv | |
16 | clt | |
|
17 | 8 | cv | |
18 | 15 17 16 | wbr | |
19 | 1 | cv | |
20 | 11 19 | cfv | |
21 | 13 19 | cfv | |
22 | 20 21 12 | co | |
23 | 22 10 | cfv | |
24 | 6 | cv | |
25 | 23 24 16 | wbr | |
26 | 18 25 | wi | |
27 | 26 9 2 | wral | |
28 | 27 8 7 | wrex | |
29 | 28 6 7 | wral | |
30 | 29 5 2 | wral | |
31 | 30 1 4 | crab | |
32 | 0 31 | wceq | |