Metamath Proof Explorer


Theorem cnmpt1mulr

Description: Continuity of ring multiplication; analogue of cnmpt12f which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J=TopOpenR
cnmpt1mulr.t ·˙=R
cnmpt1mulr.r φRTopRing
cnmpt1mulr.k φKTopOnX
cnmpt1mulr.a φxXAKCnJ
cnmpt1mulr.b φxXBKCnJ
Assertion cnmpt1mulr φxXA·˙BKCnJ

Proof

Step Hyp Ref Expression
1 mulrcn.j J=TopOpenR
2 cnmpt1mulr.t ·˙=R
3 cnmpt1mulr.r φRTopRing
4 cnmpt1mulr.k φKTopOnX
5 cnmpt1mulr.a φxXAKCnJ
6 cnmpt1mulr.b φxXBKCnJ
7 eqid mulGrpR=mulGrpR
8 7 1 mgptopn J=TopOpenmulGrpR
9 7 2 mgpplusg ·˙=+mulGrpR
10 7 trgtmd RTopRingmulGrpRTopMnd
11 3 10 syl φmulGrpRTopMnd
12 8 9 11 4 5 6 cnmpt1plusg φxXA·˙BKCnJ