Metamath Proof Explorer


Theorem cnnvg

Description: The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvg.6 U=+×abs
Assertion cnnvg +=+vU

Proof

Step Hyp Ref Expression
1 cnnvg.6 U=+×abs
2 eqid +vU=+vU
3 2 vafval +vU=1st1stU
4 1 fveq2i 1stU=1st+×abs
5 opex +×V
6 absf abs:
7 cnex V
8 fex abs:VabsV
9 6 7 8 mp2an absV
10 5 9 op1st 1st+×abs=+×
11 4 10 eqtri 1stU=+×
12 11 fveq2i 1st1stU=1st+×
13 addex +V
14 mulex ×V
15 13 14 op1st 1st+×=+
16 3 12 15 3eqtrri +=+vU