Metamath Proof Explorer


Theorem cnveq

Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995)

Ref Expression
Assertion cnveq A = B A -1 = B -1

Proof

Step Hyp Ref Expression
1 cnvss A B A -1 B -1
2 cnvss B A B -1 A -1
3 1 2 anim12i A B B A A -1 B -1 B -1 A -1
4 eqss A = B A B B A
5 eqss A -1 = B -1 A -1 B -1 B -1 A -1
6 3 4 5 3imtr4i A = B A -1 = B -1