Metamath Proof Explorer


Theorem cnveq0

Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011)

Ref Expression
Assertion cnveq0 RelAA=A-1=

Proof

Step Hyp Ref Expression
1 cnv0 -1=
2 rel0 Rel
3 cnveqb RelARelA=A-1=-1
4 2 3 mpan2 RelAA=A-1=-1
5 eqeq2 =-1A-1=A-1=-1
6 5 bibi2d =-1A=A-1=A=A-1=-1
7 4 6 imbitrrid =-1RelAA=A-1=
8 7 eqcoms -1=RelAA=A-1=
9 1 8 ax-mp RelAA=A-1=