Metamath Proof Explorer


Theorem cnvsn0

Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion cnvsn0 -1=

Proof

Step Hyp Ref Expression
1 dfdm4 dom=ran-1
2 dmsn0 dom=
3 1 2 eqtr3i ran-1=
4 relcnv Rel-1
5 relrn0 Rel-1-1=ran-1=
6 4 5 ax-mp -1=ran-1=
7 3 6 mpbir -1=