Metamath Proof Explorer


Theorem co01

Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion co01 A=

Proof

Step Hyp Ref Expression
1 cnv0 -1=
2 cnvco A-1=A-1-1
3 1 coeq2i A-1-1=A-1
4 co02 A-1=
5 2 3 4 3eqtri A-1=
6 1 5 eqtr4i -1=A-1
7 6 cnveqi -1-1=A-1-1
8 rel0 Rel
9 dfrel2 Rel-1-1=
10 8 9 mpbi -1-1=
11 relco RelA
12 dfrel2 RelAA-1-1=A
13 11 12 mpbi A-1-1=A
14 7 10 13 3eqtr3ri A=