Metamath Proof Explorer


Theorem cofcut2d

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 23-Jan-2025)

Ref Expression
Hypotheses cofcut2d.1 φAsB
cofcut2d.2 φC𝒫No
cofcut2d.3 φD𝒫No
cofcut2d.4 φxAyCxsy
cofcut2d.5 φzBwDwsz
cofcut2d.6 φtCuAtsu
cofcut2d.7 φrDsBssr
Assertion cofcut2d φA|sB=C|sD

Proof

Step Hyp Ref Expression
1 cofcut2d.1 φAsB
2 cofcut2d.2 φC𝒫No
3 cofcut2d.3 φD𝒫No
4 cofcut2d.4 φxAyCxsy
5 cofcut2d.5 φzBwDwsz
6 cofcut2d.6 φtCuAtsu
7 cofcut2d.7 φrDsBssr
8 cofcut2 AsBC𝒫NoD𝒫NoxAyCxsyzBwDwsztCuAtsurDsBssrA|sB=C|sD
9 1 2 3 4 5 6 7 8 syl322anc φA|sB=C|sD